Sydney Grammar School

Physics

8:40 am Tuesday 20 MAY

General Instructions

- Working time -2 hours
- Board-approved calculators may be used
- Write using blue or black pen
- Draw diagrams using pencil
- A Data Sheet, Formula Sheet and Periodic Table are provided at the back of this paper
- Write your name at the top of the Multiple Choice Answer Sheet \& all pages of Part B.
- Hand in your Multiple Choice Sheet and all of Part B in one bundle. (Do not staple together)

2014

FORM V
EXAMINATION

Working Time: 2 hours

Total marks (95)
This paper has three parts: Part A and Part B

Part A

Total marks (10)

- Attempt ALL Questions
- Allow about 15 minutes for this Part

Part B

Total marks (85)

- Attempt ALL Questions
- Allow about 1 hour 45 minutes for this Part

CHECKLIST

Each boy should have the following:
1 Question Paper

1 - PCK	2 - MTK	3 - AAH	4 - SRW
5 - AAH	$6-$ MRW	7 - PCK	

1 Which of the following lists contains three vector quantities?
(A) Momentum, energy, impulse
(B) Force, speed, displacement
(C) Velocity, acceleration, time
(D) Acceleration, force, momentum

2 Which is the correct unit for impulse?
(A) Newton per second
(B) Newton second
(C) Kilogram metre per second squared
(D) Kilogram per metre per second

3 A car travelling at $60 \mathrm{kmh}^{-1}$ then applies maximum braking and comes to a stop in 10 m .
With the same braking force applied, what is the new stopping distance for the same car when travelling at $120 \mathrm{kmh}^{-1}$?
(A) 10 m
(B) 20 m
(C) 30 m
(D) 40 m

4 An object, initially at rest, travels a distance d in a total time t at a constant acceleration.

What is the total time taken for the object to travel $16 d$ from rest at the same acceleration?
(A) $2 t$
(B) $4 t$
(C) $8 t$
(D) $16 t$

5 A 100 g tennis ball hits the ground at $2 \mathrm{~ms}^{-1}$ and rebounds upwards at $1.4 \mathrm{~ms}^{-1}$.
What is the change in momentum of the tennis ball?
(A) $0.34 \mathrm{kgms}^{-1}$ upwards
(B) $0.34 \mathrm{kgms}^{-1}$ downwards
(C) $0.06 \mathrm{kgms}^{-1}$ upwards
(D) $0.06 \mathrm{kgms}^{-1}$ downwards

6 A boat is moving in the direction shown below with a constant speed of $5 \mathrm{~ms}^{-1}$ as measured by Nico who is at rest on the bank of the river. Aziz walks along the deck of the boat in the direction shown with a constant speed of $2 \mathrm{~ms}^{-1}$ measured relative to the boat.

If the positive direction is as shown in the above diagram, what is the velocity of Aziz according to Nico?
(A) $+3 \mathrm{~ms}^{-1}$
(B) $-3 \mathrm{~ms}^{-1}$
(C) $-7 \mathrm{~ms}^{-1}$
(D) $+7 \mathrm{~ms}^{-1}$

7 A rope with a tension of 100 N supports a 100 kg block resting on the ground as shown below.

What is the magnitude of the force of the ground up on the block?
(A) 0 N
(B) 100 N
(C) 880 N
(D) 980 N

8 Which of the following arrangements of 5Ω resistors has the least total resistance?

9 Consider the following circuit diagram.

Between which two points ($\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}$) is the potential difference 4 V ?
(A) N and M
(B) L and M
(C) L and P
(D) P and O

10 Consider the following circuit diagram.

The ammeter reads 4.0 A .
What is the current flowing through the 6.0Ω resistor and the value of the unknown potential difference of the power supply, V ?

	current in 6.0Ω resistor (A)	potential difference (V)
(A)	1.0	10
(B)	2.0	10
(C)	2.0	20
(D)	1.0	20

Part B

Total marks (85)
Attempt ALL Questions
Allow about 1 hour and 45 minutes for this Part

Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 11 (4 marks)
Two resistors, labelled P and Q , are connected in a circuit as shown below.

When a steady current of 3 A flows in the circuit, the potential difference across resistor Q is 9 V .
(a) Calculate the potential difference across resistor P .
\qquad
\qquad
(b) Calculate the resistance of resistor P .
\qquad

Question 11 continued.
Marks
(c) Calculate the total charge leaving the battery in one minute when the ammeter reads 3 A .

Class
Name Marks

This question refers to the circuit diagram below.

(a) Determine the combined resistance of the two parallel resistors.
\qquad
\qquad
\qquad

Question 13 (5 marks)
Marks

The data in the following table shows how the potential difference (V) across a resistor varies as the current (I) through it is altered.

current (A)	potential difference (V)
0.0	0.0
0.4	1.5
0.8	3.0
1.2	4.5
1.6	6.0
2.0	7.5

(a) Plot a graph of potential difference (on the y axis) versus current for the resistor.

Question 13 continued on next page.

(b) Using the graph, or otherwise, calculate the resistance of the resistor.

Class

Name

BLANK PAGE

The displacement versus time graph shown below represents the motion of a train along a straight track.

Question 14 continued on next page.

Question 14 continued.
(a) Use the letters on the graph to identify one point where:
i. the train is at rest.
ii. the train is accelerating.

1
\qquad
iii. the train is back at the original position.
\qquad
iv. the train has maximum speed.

Question 14 continued on next page.

Question 14 continued.

(b) Determine:
i. the total distance travelled by the train for the 500 s .
\qquad
\qquad
ii. the magnitude of the average velocity of the train for the 500 s .
\qquad
\qquad
\qquad
\qquad

Question 15 (6 marks)
In 1997, a high speed car achieved the World Land Speed Record and became the first car to officially break the sound barrier. The car accelerated uniformly in two stages as shown in the table below. The car started from rest.

Stage	Time (\mathbf{s})	Speed attained at end of stage $\left(\mathbf{m s}^{\mathbf{- 1}}\right)$
1	$0.0-4.0$	44.0
2	$4.0-12.0$	340

(a) Calculate the acceleration of the car in Stage 1.
\qquad
\qquad
(b) Calculate the total distance travelled by the car in 12.0 s .
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Calculate the average speed of the car over the 12.0 s .
\qquad

Question 16 (5 marks)
Sally stands on the edge of a vertical cliff and throws a stone vertically upwards.

The stone leaves her hand with a speed of $15 \mathrm{~ms}^{-1}$ at the instant her hand is 80 m above the surface of the sea. Air resistance is negligible.
(a) Calculate the maximum height reached by the stone as measured from the point where it is thrown.
\qquad
\qquad
\qquad
(b) Determine the time for the stone to reach the surface of the sea after leaving Sally's hand.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Class

Name

BLANK PAGE

A plane at Airport A needs to fly to Airport B, which is 270 km North, in 30 minutes. At the time of the flight, there is a constant wind blowing at $43 \mathrm{~ms}^{-1}$ East.

By drawing a vector diagram, determine the direction of flight of the plane and the speed of the plane through the air.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 18 (4 marks)

A simple vertical Atwood machine consists of a 3.0 kg mass and a 5.0 kg mass supported from a frictionless pulley by a light inextensible string as shown in the diagram below.

(a) Calculate the magnitude of the acceleration of the two masses.
\qquad
\qquad
\qquad

Question 19 (4 marks)
Marks

Three blocks are pushed to the right on a smooth (ie frictionless) horizontal surface as shown below.

(a) Calculate the magnitude of the acceleration of the masses.
\qquad
(b) Determine the magnitude of the net force on the 30 kg mass.
\qquad
\qquad
(c) Calculate the magnitude of the force of the 30 kg mass on the 20 kg mass.
\qquad
\qquad
\qquad
\qquad

Two masses are pulled along a smooth, horizontal surface by two horizontal forces as shown below.

(a) Determine the magnitude of the acceleration of the masses.
\qquad
(b) Determine the magnitude of the tension force in the rope at X .
\qquad
(c) If the same arrangement of masses is now placed on a rough surface, it is found that the acceleration is $3.2 \mathrm{~ms}^{-2}$ to the right as shown in the following diagram.

$$
\mathrm{a}=3.2 \mathrm{~ms}^{-2} \text { right }
$$

rough horizontal surface

Calculate the magnitude of the force of friction acting on each mass (assuming that it is the same for each mass).
\qquad
\qquad
\qquad

A man of mass 80 kg is climbing up a rope as shown below.

If the acceleration of the man is $1.0 \mathrm{~ms}^{-2}$ upwards, determine the magnitude of the tension force in the rope.
\qquad
\qquad
\qquad

The graph shown below represents the velocity of two cars racing along a straight road over a period of 60 s . The race begins at $\mathrm{t}=0 \mathrm{~s}$ when the two cars are side by side.

(a) Determine the speed of car A at 10 s .
\qquad
(b) Calculate the magnitude of the acceleration of car B at 20 s .
\qquad
\qquad
\qquad
\qquad

Question 22 continued on next page.

Class

Name
Question 22 continued.
(c) Calculate the time when car B catches up with Car A again.
\qquad
\qquad
\qquad
\qquad
\qquad

On a distant planet, an alien pupil performs an experiment to measure the acceleration due to gravity. He drops (i.e. from rest) a ball from various heights and measures the time the ball takes to hit the ground.

The equation relating the height dropped by the ball from rest and time (t) is given by:

$$
\text { height }=\frac{1}{2} g t^{2}
$$

where $\mathrm{g}=$ acceleration due to gravity.
He obtains the following data:

Height (m)	Time (s)	
0.5	0.24	
1.0	0.41	
1.5	0.45	
2.0	0.55	
2.5	0.61	
3.0	0.65	

Question 23 continued on next page.

Question 23 continued.

(a) Plot a straight-line graph of the pupil's data that will allow you to determine the acceleration due to gravity on the planet.
(Note: you may need to manipulate the data you are given in the table - an extra column has been provided for you to do so.)

Question 23 continued on next page.

Question 23 continued.
(b) Calculate the value for the acceleration due to gravity obtained by the alien pupil.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 24 (3 marks)
Marks
The diagram below shows an experiment performed by a boy in a Physics lesson.

The boy pulls a block, from rest, along the desk over a distance of 1.5 m with a constant force. A light gate measures the instantaneous speed of the block as it passes the 1.5 m mark.

The boy believes that a constant force of friction acts on the block during his experiments. He varies the force with which he pulls the block and obtains the following graph:

Question 24 continued on next page.

Class

Name
Question 24 continued.

Use the graph to determine:
(a) the force of friction acting.
\qquad
(b) the mass of the block.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 25 (6 marks)

Natalia, of mass 50 kg , drops from a window 5.0 m above the ground as shown in the following diagram.

(a) Determine Natalia's gravitational potential energy when she is 5.0 m above the ground.
\qquad
(b) Determine the magnitude of her velocity when she first hits the ground.
\qquad
\qquad
\qquad
\qquad

Question 25 continued on next page.

Question 25 continued.

(c) The ground onto which Natalia falls is made of powdered snow. The snow applies a constant braking force upwards of $5.20 \times 10^{3} \mathrm{~N}$ on her.

Calculate the maximum distance Natalia will sink into the snow before stopping.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 26 (5 marks)
Marks
A 2.0 kg pendulum moving at $4.0 \mathrm{~ms}^{-1}$ collides with a stationary 3.0 kg pendulum and then they stick together.

(a) Determine the magnitude of the momentum of the 2.0 kg pendulum immediately before the collision.
\qquad
(b) Determine the velocity of the combined pendulums immediately after the collision.
\qquad
\qquad
\qquad
\qquad

Question 26 continued on next page.

Question 26 continued.

(c) Ignoring the diameters of the pendulums, determine the vertical height the combined pendulums reach after the collision.
\qquad
\qquad
\qquad
\qquad
\qquad

Two objects, A and B, approach each other and then collide. After the collision object A is travelling at half the speed of object B.

(a) Calculate the total momentum of this system before the collision.
\qquad
\qquad
\qquad
(b) (i) Find all possible solutions for the final velocities of object A and object B.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Identify which solution you think is most likely. Justify your answer.
\qquad

Name

BLANK PAGE

Physics

Data Sheet

Charge on the electron, q_{e}	$-1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, m_{e}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of neutron, m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Mass of proton, m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Speed of sound in air	$340 \mathrm{~m} \mathrm{~s}^{-1}$
Earth's gravitational acceleration, g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$
Radius of Earth, R_{E}	$6.4 \times 10^{6} \mathrm{~m}^{2}$
Speed of light, c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Magnetic force constant, $\left(k \equiv \frac{\mu_{0}}{2 \pi}\right)$	$2 \times 10^{-7} \mathrm{~N} \mathrm{~A}^{-2}$
Universal gravitational constant, G	$6.7 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Mass of Earth	$6.0 \times 10^{24} \mathrm{~kg}^{2}$
Planck's constant, h	$6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Rydberg's constant, R (hydrogen)	$1.097 \times 10^{7} \mathrm{~m}^{-1}$
Atomic mass unit, u	$1.661 \times 10^{-27} \mathrm{~kg}^{2}$
1 eV	$931.5 \mathrm{MeV}^{2}$
Density of water, ρ	$1.602 \times 10^{-19} \mathrm{~J}$
Specific heat capacity of water	$1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$

BLANK PAGE

FORMULAE SHEET FORM V ONLY

$$
\begin{aligned}
& v_{a v}=\frac{\Delta r}{\Delta t} \\
& a_{a v}=\frac{\Delta v}{\Delta t}=\frac{v-u}{t} \quad I=\frac{Q}{t} \\
& v=u+a t \\
& v^{2}=u^{2}+2 a r \quad P=V I \\
& r=u t+\frac{1}{2} a t^{2} \\
& \text { Energy }=\text { VIt } \\
& \sum F=m a \\
& F=\frac{m v^{2}}{r} \\
& v=f \lambda \\
& f=\frac{1}{T} \\
& E_{k}=\frac{1}{2} m v^{2} \\
& I \propto \frac{1}{d^{2}} \\
& E_{p}=m g h \\
& \frac{v_{1}}{v_{2}}=\frac{\sin i}{\sin r} \\
& \begin{array}{lr}
W=F r & n \lambda=d \sin \theta \\
p=m v & n \lambda=\frac{d x}{L}
\end{array} \\
& \Delta p=F_{n} t \quad E_{p}=-\frac{G m_{1} m_{2}}{r} \\
& F=m g \\
& E=\frac{F}{q} \\
& F=\frac{G m_{1} m_{2}}{d^{2}} \\
& E=\frac{V}{d} \\
& \frac{r^{3}}{T^{2}}=\frac{G M}{4 \pi^{2}} \\
& E=m c^{2}
\end{aligned}
$$

FORMULAE SHEET

$$
\frac{F}{l}=k \frac{I_{1} I_{2}}{d} \quad d=\frac{1}{P}
$$

$$
F=B I l \sin \theta
$$

$$
M=m-5 \log \left(\frac{d}{10}\right)
$$

$$
\tau=F d
$$

$$
\tau=n B I A \cos \theta
$$

$$
\frac{I_{A}}{I_{B}}=100\left(m_{B}-m_{A}\right) / 5
$$

$$
\frac{V_{p}}{V_{s}}=\frac{n_{p}}{n_{s}}
$$

$$
m_{1}+m_{2}=\frac{4 \pi^{2} r^{3}}{G T^{2}}
$$

$$
F=q v B \sin \theta
$$

$$
\frac{1}{\lambda}=R_{H}\left\lfloor\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right\rfloor
$$

$$
E=\frac{V}{d}
$$

$$
\lambda=\frac{h}{m v}
$$

$$
E=h f
$$

$$
A_{0}=\frac{V_{\text {out }}}{V_{\text {in }}}
$$

$$
c=f \lambda
$$

$$
\frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{R_{f}}{R_{i}}
$$

$$
Z=\rho v
$$

$$
\frac{I_{r}}{I_{0}}=\frac{\left[Z_{2}-Z_{1}\right]^{2}}{\left[Z_{2}+Z_{1}\right]^{2}}
$$

> Surface area of a sphere of radius, $R=4 \pi R^{2}$
PERIODIC TABLE OF THE ELEMENTS

					®¢	
				in-o	ぶ先	
		๒ぃ			¢	
		nas 就豪				
	○就复			$\mathscr{\sim}$		
		mー	mভ			
$\underset{\square}{\stackrel{\rightharpoonup}{4}}$			¢ละ		oin oico	
				$\forall<\frac{00}{9}$	の，	
	スそ웅		No	子		
			NiLis		$\therefore \circ \text { Nig }$	은
					$\approx \approx \underset{\sim}{\circ}$	人－¢
				$\text { mン } \bar{\infty}$		
	$+\infty \frac{\mathrm{N}}{\mathrm{O}} \mathrm{~B}$			$\infty \stackrel{\rightharpoonup}{0} \omega$		¢ ¢
	mīす。	=二俞高		लि	incig	か止

The International Union of Pure and Applied Chemistry Periodic Table of the Elements（February 2010 version）is the principal source of data．Some data may have been modified．

PHYSICS Form V May 2014
 8:40 am Tues 20 MAY

General Instructions

- Write your class and Candidate Number in the space provided.
- Attempt all questions
- Use a blue or black pen
- Select the alternative A, B, C, or D that best answers the question.
- Fill in the response oval completely.

Multiple Choice ANSWER SHEET

Answer the questions in the spaces provided.
Show all relevant working in questions involving calculations.

Question 11 (4 marks)

Two resistors, labelled P and Q , are connected in a circuit as shown below.

When a steady current of 3 A flows in the circuit, the potential difference across resistor Q is 9 V .
(a) Calculate the potential difference across resistor P

$V_{p}=15-9 /$ (1)mk for working
(b) Calculate the resistance of resistor P .

Question 11 continued on next page.
\square
Class

Name
Question 11 continued.
(c) Calculate the total charge leaving the battery in one minute when the ammeter reads 3 A .

Question 12 (5 marks)
This question refers to the circuit diagram below.

(a) Determine the combined resistance of the two parallel resistors.

$$
\begin{aligned}
\frac{1}{R} & =1 / 4+1 / 2=3 / 4 \text { Dink } \\
\therefore R & =4 / 3 \Omega=1.33 \Omega \sqrt{\text { Ink inced }}
\end{aligned}
$$

\qquad

> then $x_{x} /$ ink.

Question 13 (5 marks)
The data in the following table shows how the potential difference (V) across a resistor varies as the current (I) through it is altered.

current (A)	potential difference (V)
0.0	0.0
0.4	1.5
0.8	3.0
1.2	4.5
1.6	6.0
2.0	7.5

Question 13 continued.

(b) Using the graph, or otherwise, calculate the resistance of the resistor.

$$
\begin{aligned}
R & =V / I \\
& =7.5 / 2=3.755 / \text { Dink }
\end{aligned}
$$

$C R / B$
Class
MTK.

Question 14 (7 marks)
Marks

The displacement versus time graph shown below represents the motion of a train along a straight track.

Question 14 continued on next page.

Question 14 continued.
(a) Use the letters on the graph to identify one point where:
i. the train is at rest.
\qquad
ii. the train is accelerating.
\qquad
iii. the train is back at the original position.

iv. the train has maximum speed. $\quad 1$
\qquad

Question 14 continued on next page.

Question 14 continued.

Marks
(b) Determine:
i. the total distance travelled by the train for the 500 s .

ii. the magnitude of the average velocity of the train for the 500 s .

\qquad

Question 15 (6 marks)
In 1997, a high speed car achieved the World Land Speed Record and became the first car to officially break the sound barrier. The car accelerated uniformly in two stages as shown in the table below. The car started from rest.

Stage	Time (s)	Speed attained at end of stage $\left(\mathbf{m s}^{-1}\right)$
1	$0.0-4.0$	44.0
2	$4.0-12.0$	340

(a) Calculate the acceleration of the car in Stage 1.

$$
\vec{a}_{1}=\vec{V}-\bar{\pi} / t=\frac{44-0}{4}=11 \mathrm{~ms}^{-2}
$$

(b) Calculate the total distance travelled by the car in 12.0 s .
(1) $\quad \vec{r}=\vec{a} t+1 / 2 a t^{2}=0+1 / 2 \times 11 \times 4^{2}=88 \mathrm{~m}$.
(1)

(1) $r_{2}=44 \times 8+1 / 2 \times 37 \times 8^{2}=1536 \mathrm{~m}$.
(1) Total distance $=1536+88=1624 \mathrm{~m}$
\qquad
(c) Calculate the average speed of the car over the 12.0 s .
$V_{A V}=\Delta r / \Delta t=1624 / 12=135.3 \mathrm{~ms}^{-1}$

Question 16 (5 marks)
Sally stands on the edge of a vertical cliff and throws a stone vertically upwards.

The stone leaves her hand with a speed of $15 \mathrm{~ms}^{-1}$ at the instant her hand is 80 m above the surface of the sea. Air resistance is negligible.
(a) Calculate the maximum height reached by the stone as measured from the point where it is thrown.

(1) $\quad 80=-15 t+1 / 2 \times 9.80 t^{2}$
(1) $\quad 4 \cdot 9 t^{2}-15 t-80=0$
(1). $t=5.85 \mathrm{~s}$.

OR (1) time to top 1.53 s sea. 4.32 s
(1) Addition $=\frac{5.855}{5}$

Question 17 (5 marks)

A plane at Airport A needs to fly to Airport B, which is 270 km North, in 30 minutes. At the time of the flight, there is a constant wind blowing at $43 \mathrm{~ms}^{-1}$ East.

By drawing a vector diagram, determine the direction of flight of the plane and the speed of the plane through the air.

\square
Class

Question 18 (4 marks)
A simple vertical Atwood machine consists of a 3.0 kg mass and a 5.0 kg mass supported from a frictionless pulley by a light inextensible string as shown in the diagram below.

(a) Calculate the magnitude of the acceleration of the two masses.

(b) Calculate the magnitude of the tension force in the string at X .

Page 20 of 41

Three blocks are pushed to the right on a smooth (ie frictionless) horizontal surface as shown below.

(a) Calculate the magnitude of the acceleration of the masses.
\qquad
(b) Determine the magnitude of the net force on the 30 kg mass.
\qquad
(c) Calculate the magnitude of the force of the 30 kg mass on the 20 kg mass.

Two masses are pulled along a smooth, horizontal surface by two horizontal forces as shown below.

smooth horizontal surface
(a) Determine the magnitude of the acceleration of the masses.

(b) Determine the magnitude of the tension force in the rope at X .

(c) If the same arrangement of masses is now placed on a rough surface, it is found that the acceleration is $3.2 \mathrm{~ms}^{-2}$ to the right as shown in the following diagram.

$$
\mathrm{a}=3.2 \mathrm{~ms}^{-2} \text { right }
$$

rough horizontal surface

Calculate the magnitude of the force of friction acting on each mass (assuming that it is the same for each mass).

A man of mass 80 kg is climbing up a rope as shown below.

If the acceleration of the man is $1.0 \mathrm{~ms}^{-2}$ upwards, determine the magnitude of the tension force in the rope.

Question 22 (5 marks)

The graph shown below represents the velocity of two cars racing along a straight road over a period of 60 s . The race begins at $\mathrm{t}=0 \mathrm{~s}$ when the two cars are side by side.

(a) Determine the speed of car A at 10 s .

(b) Calculate the magnitude of the acceleration of car B at 20 s .
\qquad
\qquad
\qquad
\qquad

Question 22 continued on next page.
\square
Class

Name
Question 22 continued.
(c) Calculate the time when car B catches up with Car A again.

$$
\text { At } \begin{aligned}
t=30 \mathrm{~s} \quad V_{A} & =30 \times 30=900 \mathrm{~m} \\
V_{B} & =\frac{1}{2} \times 30 \times 30=450 \mathrm{~m}
\end{aligned}
$$

Fra 30s:

$$
r_{B}=450+30 t+\frac{t^{2}}{2} \quad r_{A}=900+30 t-\frac{t^{2}}{2}
$$

$$
\begin{aligned}
& 450+30 t+\frac{t^{2}}{2}=900+30 t-\frac{t^{2}}{2} \\
& \therefore \quad t^{2}=450 \\
& \therefore \quad t=21.2 \mathrm{~s} \\
& \therefore \quad \begin{array}{l}
\text { tron } \\
\therefore \quad 21.2
\end{array} \\
& =51.2 \mathrm{~s}
\end{aligned}
$$

On a distant planet, an alien pupil performs an experiment to measure the acceleration due to gravity. He drops (ie. from rest) a ball from various heights and measures the time the ball takes to hit the ground.

The equation relating the height dropped by the ball from rest and time (t) is given by:

$$
\text { height }=\frac{1}{2} g t^{2}
$$

where $g=$ acceleration due to gravity.
He obtains the following data:

Height (m)	Time (s)	Time $^{2}\left(\mathrm{~s}^{2}\right)$
0.5	0.24	0.058
1.0	0.41	0.168
1.5	0.45	0.203
2.0	0.55	0.303
2.5	0.61	0.372
3.0	0.65	0.423

Question 23 continued on next page.

\square
Class

Name
Question 23 continued.
(b) Calculate the value for the acceleration due to gravity obtained by the alien pupil.
 Remade.

Q_ From Previous PACE: Fore 4 makers...

- Smaiamt line Graph (ie $h v t^{2}, t^{2} v h$ ethene)
- Points Correcter
- Ares labezled
- Ares sta Corker Units
- Scale
- Converts
- Cine ul Bear fit.
(-1) For Every Encore.

The diagram below shows an experiment performed by a boy in a Physics lesson.

The boy pulls a block, from rest, along the desk over a distance of 1.5 m with a constant force. A light gate measures the instantaneous speed of the block as it passes the 1.5 m mark.

The boy believes that a constant force of friction acts on the block during his experiments. He varies the force with which he pulls the block and obtains the following graph:

Question 24 continued on next page.
\square
Class

Question 24 continued.
Use the graph to determine:
(a) the force of friction acting.
 (Accepter 2.5-3.5)
(b) the mass of the block.
\qquad

$$
\therefore v^{2}=u^{2}+2 a r
$$

$$
V^{2}=\frac{3 F}{M}-\frac{4 \cdot 5}{M} \Rightarrow \operatorname{Sin} c
$$

$$
\text { Gradient }=\frac{R_{\text {SSE }}}{R_{\text {I }}}=0.75=\frac{3}{M}
$$

$$
M=4 \mathrm{~kg}
$$

ore $B_{\text {g }}$ Suitable Substitution.

Question 25 (6 marks)
Marks

Natalia, of mass 50 kg , drops from a window 5.0 m above the ground as shown in the following diagram.

(a) Determine Natalia's gravitational potential energy when she is 5.0 m above the ground.

(b) Determine the magnitude of her velocity when she first hits the ground.

Question 25 continued on next page.

Question 25 continued.
(c) The ground onto which Natalia falls is made of powdered snow. The snow applies a constant braking force upwards of $5.20 \times 10^{3} \mathrm{~N}$ on her.

Calculate the maximum distance Natalia will sink into the snow before stopping.

farces

$\varepsilon F=5200-440=4710=\mathrm{ma}=50 \mathrm{a}$ $a=-94.2 \mathrm{~m} / \mathrm{s}$

$$
v=0, u=9.9
$$

a

$$
f=\frac{v^{2}-u^{2}}{2 a}
$$

$$
\frac{-9 \cdot 9^{2}}{2(-94 \cdot 2)}
$$

$$
=0.52 \mathrm{~m}
$$

A 2.0 kg pendulum moving at $4.0 \mathrm{~ms}^{-1}$ collides with a stationary 3.0 kg pendulum and then they stick together.

(a) Determine the magnitude of the momentum of the 2.0 kg pendulum immediately before the collision.

magnitude ont
(b) Determine the velocity of the combined pendulums immediately after the collision.

$$
\begin{equation*}
\varepsilon p_{1}=\Sigma p z- \tag{2}
\end{equation*}
$$

$$
(2+3) v=2 \times 4=8
$$

\square

Question 26 continued.
(c) Ignoring the diameters of the pendulums, determine the vertical height the combined pendulums reach after the collision.

\qquad

is not elastic Maury
(1) $K E=4 P E$
or
(1) Calulito $K E=\frac{1}{2} 5(1.6)^{2}=6.45$.

\square
Class

Question 27 (8 marks)
Two objects, A and B, approach each other and then collide. After the collision object A is travelling at half the speed of object B.

(a) Calculate the total momentum of this system before the collision.

(b) (i) Find all possible solutions for the final velocities of object A and object B.

(ii) Identify which solution you think is most likely. Justify your answer.

ADDITIONAL CRIB NOTES FOR Q27

Q27bi)

Successfully forming an equation of conservation of momentum (with substitution) ie $70=30 \mathrm{v}_{A}+20 \mathrm{v}_{\mathrm{B}}$	1
Substitution of one or both of $\mathrm{v}_{\mathrm{B}}= \pm 2 \mathrm{v}_{\mathrm{A}}$	1
Correctly calculates one solution set of $\mathrm{v}_{A} \& \mathrm{v}_{\mathrm{B}}$	1
Both correct valid solutions	1

Solution 1
$\mathrm{v}_{\mathrm{A}}=1, \mathrm{v}_{\mathrm{B}}=2$
Solution 2
$\mathrm{v}_{\mathrm{A}}=-7, \mathrm{v}_{\mathrm{B}}=14$

Comments

- There is no indication in the question that the collision is elastic. So conservation of kinetic energy cannot be used
- Solutions occur in pairs of velocities for objects A \& B. Answers such as $\mathrm{v}_{\mathrm{A}}= \pm 1$, $\mathrm{v}_{\mathrm{B}}= \pm 2$ do not indicate paired solutions
- Many boys completely ignored that one object is moving twice the speed of the other. This made identifying wrong solutions easy.
- Conservation of momentum is true for all collisions. Also total momentum $=$ +70 so answers that assume $\mathrm{v}_{\mathrm{A}}=-1, \mathrm{v}_{\mathrm{B}}=-2$ is valid are simply wrong.
- Many boys are using 1 and 2 as subscripts and are not properly distinguishing which objects A or B velocity they are talking about
- $\mathrm{U}_{\mathrm{A}}-\mathrm{U}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}$ is only true for elastic collisions and not valid

Q27bii)

Despite appearances the question is not really asking your personal opinion. You have to justify your answer using some form of Physics.

There is no mark for identifying a correct answer, all marks were for justifying your answer.

a valid explanation that makes a clear distinction between 2 valid answers. (sorry, having only one answer means no marks - the question tells you there is more than one answer.	1
Unfortunately making comparisons when you have invalid answers leads to nonsensical justifications that cannot be accepted. Therefore carried forward errors could not be accepted and some papers were remarked accordingly.	(
Neither solution is elastic, and therefore an assumption that it is "not the elastic one" is not valid, however comparisons with total energy loss or change in KE or are more valid.	
Identifies (mathematically) that the kinetic energy (or combined velocities) is greater for one solution and without any addition of energy these solutions are invalid.	1

Total KE (Before) $=0.5 * 30 * 9^{\wedge} 2+0.5^{*} 20^{*}(-10)^{\wedge} 2=2215 \mathrm{~J}$

Solution 1

$\mathrm{v}_{\mathrm{A}}=1, \mathrm{v}_{\mathrm{B}}=2$
Total KE (after) $=0.5 * 30^{*} 1 \wedge 2+0.5 * 20^{*}(2)^{\wedge} 2=55 \mathrm{~J}$
This is an inelastic collision

Solution 2

$\mathrm{v}_{\mathrm{A}}=-7, \mathrm{v}_{\mathrm{B}}=14$
Total KE (after) $=0.5^{*} 30^{*}(-7)^{\wedge} 2+0.5^{*} 20^{*}(14)^{\wedge} 2=2695 \mathrm{~J}$
Elastic collision means KE is conserved.
In this case there is more KE after than before.
It is not a valid collision as energy is not conserved (in this closed system).

