NEWINGTON COLLEGE

2014 Assessment 1

Year 11 Mathematics (2unit)

General Instructions:

- Date of task Wednesday 9th April (Wk 11A)
- Reading time 5 mins
- Working time 120 mins
- Weighting 35%
- Board-approved calculators may be used.
- Attempt all questions.
- Show all relevant mathematical reasoning and/or calculations.

Total marks - 85

Section I (10 marks)

- Answer questions 1 to 10 on the multiple choice answer sheet provided at the end of this paper.
- Allow about 15 minutes for this section.

Section II (75 marks)

- Answer questions 11 to 17 in the writing booklets provided.
- Start each question on a new booklet.
- Each booklet must show the candidate's computer number.

Outcomes to be assessed:

P1 & P3 Performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions, trigonometric identities.

P5 Understands the concept of a function and the relationship between a function and its graph.

Section I

10 marks

Use the multiple-choice answer sheet for Questions 1-10

Remove the Multiple Choice Answer Sheet from the back of the paper.

QUESTION 1

Evaluate $\sqrt{\frac{3.8 \times 10^{11}}{2.03 \times 10^7}}$, in scientific notation to 2 significant figures is:

A. 136.82 B. 1.36×10^2

C. 1.4×10^2 D. 1.4×10^7

QUESTION 2

Evaluate |a-b| if a = -5 and b = 7

A.	2	B.	12

C. -2 D. -12

QUESTION 3

Expressed with a rational denominator, $\frac{3}{2\sqrt{6}}$ would be written:

A.	$\frac{3\sqrt{6}}{2}$	В.	$\frac{18}{12\sqrt{6}}$	
C.	$\frac{\sqrt{6}}{2}$		D.	$\frac{\sqrt{6}}{4}$

QUESTION 4

Expand and simplify $(3x-4y)^2$

- A. $9x^2 24xy + 16y^2$ B. $9x^2 + 24xy + 16y^2$
- C. $9x^2 12xy + 16y^2$ D. $9x^2 + 16y^2$

QUESTION 5 Evaluate $\left(1\frac{1}{2}\right)^{-3}$, giving your answer as a fraction.

A.	$\frac{6}{9}$	В.	$\frac{8}{27}$
C.	$\frac{-8}{27}$	D.	$\frac{27}{3}$

QUESTION 6

Factorise $t^3 + 8$

A. $(t+8)(t^2+8t+64)$ B. $(t+8)(t^2-8t+64)$ C. $(t+2)(t^2-4t+4)$ D. $(t+2)(t^2-2t+4)$

QUESTION 7

Find the domain (D) and the range (R) of the function below.

Newington College

QUESTION 8

Evaluate
$$ab^{\frac{1}{2}}c^{-2}$$
 if $a = \frac{2}{3}$, $b = 9$ and $c = 0.5$
A. 8 B. $\frac{1}{2}$
C. 12 D. $\frac{1}{4}$

QUESTION 9

A television costs \$1850. Due to inflation it increased in cost by 4% this year. What was its value last year?

A.	\$1924.00	В.	\$1778.85
C.	\$1867.80	D.	\$1776.00

QUESTION 10

Write
$$\frac{1}{5\sqrt[3]{(t+8)^7}}$$
 in index form

A.
$$5(t+8)^{\frac{-7}{3}}$$
 B. $3(t+8)^{\frac{7}{5}}$

C.
$$\frac{1}{5}(t+8)^{\frac{-7}{3}}$$
 D. $\frac{1}{3}(t+8)^{\frac{-7}{5}}$

End of Section I

Section II 75 marks

Start each question in a separate booklet for Questions 11 - 17

QUEST	'ION 11	(9 Marks)	(Start a new booklet)	Marks
(a)	Use algebraic simplest tern	techniques to 1s.	express 0.71 as a fraction in	2
(b)	Simplify (i) $\sqrt{45}$ (ii) $2\sqrt{48}$ -	- 3√27		1 2
(c)	Expand and si	implify $(3\sqrt{6} -$	$(-4)(2\sqrt{3}+\sqrt{2})$	2
(d)	Express $\frac{\sqrt{5}}{\sqrt{5}}$ +	$\frac{\sqrt{2}}{\sqrt{2}}$ with a rat	tional denominator.	2
QUEST Factori	TION 12 se fully	(10 Marks)	(Start a new booklet)	Marks

(i) x^2	$x^{2}-6x-55$	1
-----------	---------------	---

(ii)
$$5m^2 - 20$$
 2

(iii)
$$t^3 + 2t^2 - 4t - 8$$
 2

(iv)
$$8x^2 - 14x + 3$$
 2

(v)
$$a^6 - 1$$
 3

QUESTION 13 (11)

(11 Marks) (Start a new booklet)

Marks

(a) Simplify

(i)
$$\frac{x^2 - 2x + 1}{x^2 - x}$$
 2

(ii)
$$\frac{\left(-2p^{3}q^{2}\right)^{2}}{4(mn)^{2}} \times \frac{mn}{p^{6}q^{4}}$$
 2

(iii)
$$\frac{3ab-6a}{a^2-4} \div \frac{2b-4}{(a+2)^2}$$
 2

(b) Express as a single fraction in simplest terms

(i)
$$\frac{2x}{3} - \frac{x-1}{2}$$
 2

(ii)
$$\frac{7}{9-x^2} + \frac{2}{6+2x}$$
 3

QUESTION 14	(16 Marks)	(Start a new booklet)	Marks
Solve for <i>x:</i>			
(a) <i>x</i>	+3 =5-3x		3

(b)
$$9-2x \le 5$$
 2

(c)
$$\frac{6}{x} \le \frac{3}{4}$$
 2

(d)
$$|3x-9| \le 15$$
 3

(e)
$$\frac{x+1}{2} - \frac{x-2}{3} + \frac{2x}{4} = 2$$
 3

(f)
$$9^{2x} = 27^{x+3}$$
 3

Newington College

QUES	TION 15	(10 Marks)	(Start a new booklet)	Marks
(a)	Solve for <i>x</i> gi	ving exact solu	itions:	
	(i) $x^2 - 7$	x + 10 = 0		2
	(ii) $3x^3 + 3x^3 + 3x$	$9x^2 = 0$		2
(b)	Solve for <i>x</i> , surd form.	$2x^2 - 2x - 5 =$	0 giving your answer in simplified	2
(c)	Use completi	ing the square	method to solve, $x^2 - 4x = 10$, giving	2
	your solutior	ns to 2 decima	l places.	
(d)	Solve for <i>m</i> ,	$m^2 - 3m - 18 \le 3m - 18 $	≤ 0	2

OUESTION 16	(9 Marks) (Sta	art a new booklet) Marks
QUESTION IU	() marks	ງ (ວິທ		.j mark.

(a) Redraw this function into your answer booklet. Add to the **1** diagram the necessary part of the function so it becomes an odd function. *y*

Question 16 continues on the next page

Newington College

(b) A function is defined by $f(x) = x^2 - 5x - 14$.

QUESTION 1	.7	(10 Marks) (Start a new booklet)	Marks
	(vi)	State the range of this function.	1
	(v)	Sketch the function showing all these details.	2
	(iv)	the co-ordinates of the vertex	1
	(iii)	the equation of the axis of symmetry	1
	(ii)	the y-intercept	1
Find	(i)	the <i>x</i> -intercepts	2

(a) A function is defined by : $f(x) = \begin{cases} x^2, & \text{for } x \le 2\\ 2x+1, & \text{for } x > 2 \end{cases}$

Evaluate
$$f(-1) + 2f(2) - f(3)$$
 2

(b) A function is defined as
$$f(x) = x^3 - 2x$$

(i)	Show this function is either even, odd or neither.	2
(ii)	What is the geometrical significance of this?	1

(c) Solve simultaneously:

(i)	4a + 3b = 11	2
	3a + b = 2	
(ii)	y = 3x	3
	xy = 12	

END OF EXAM

10 Marks Attempt Question 1 – 10. Allow approximately 15 minutes for this section.

Use the multiple choice answer sheet below to record your answers to Question 1 - 10.

Select the alternative: A, B, C or D that best answers the question. Colour in the response oval completely.

Sample:

2+4=?	(A)	2	(B)	6	(C)	8	(D)	9
А	\bigcirc	В	\bullet	С	\bigcirc	D	\bigcirc	

If you think you have made a mistake, draw a cross through the incorrect answer and colour in the new answer

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word "*correct*" and draw an arrow as follows:

Year 11 Extension 1 Mathematics

Multiple Choice Answer Sheet

Completely colour in the response oval representing the most correct answer.

1	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
2	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
3	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
4	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
5	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
6	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
7	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
8	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
9	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc
10	А	\bigcirc	В	\bigcirc	С	\bigcirc	D	\bigcirc

Mark: /10