Write the answer to each question on the question paper. Show all working.

Question 1

(7 marks)
a) Evaluate, correct to 2 decimal places $\sqrt{\frac{23.45^{2}-14.02^{2}}{6.2 \times 13.9}}$
b) Convert the recurring decimal, $2 . \ddot{4} \dot{5}$ to a fraction (rational number). (show all working; without the use of the calculator)
c) Express without using negative or fractional powers: $(y+4)^{-\frac{2}{3}}$
(2)
d) Evaluate $\frac{a^{-3}}{a^{2} b^{-4}}$ when $a=\frac{1}{3}$ and $b=\frac{1}{2}$. Give answer in $\frac{a}{b}$ form.

Question 2

a) Simplify:
i) $\frac{m^{2}-3 m p}{3 m-9 p}$
ii) $\frac{4}{x-3}-\frac{2}{x}$
(2)
iii) $\frac{x+5}{3} \div \frac{x^{2}-25}{15}$
(2)
b) Factorize fully:

$$
\begin{equation*}
\text { i) } 8 x^{2} y+20 x y-12 y \tag{2}
\end{equation*}
$$

ii) $\quad h^{3}+27$
(1)
c) Rationalize the denominator: $\frac{2 \sqrt{3}}{4-\sqrt{6}}$

Question 3

(13 marks)
a) Solve:
i) $x^{2}=7 x$
(2)
ii) $\quad \frac{x-3}{3}-\frac{x+5}{2}=4$
(2)
iii) $|2 x-3|=-3 x+7$
b) Solve for \boldsymbol{y} and graph the solution on a number line

$$
|2 y-3|>5
$$

c) Solve the pair of simultaneous equations

$$
\begin{gathered}
3 x-2 y=11 \\
5 x+y=1
\end{gathered}
$$

Question 4

a) The interior angle of a regular polygon is 150°. How many sides does the polygon have?
b) In the figure below, $B E$ is parallel to $C D$.

i) Show that $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACD}$ are similar triangles. Give reasons.
ii) Find the value of x.
iii) Find the value of y, giving reasons for all your working.
c) In the diagram below, $B D=B C, \angle A E D=\angle B C D=67^{\circ}, \angle B A D=32^{\circ}$ and $\angle A D B=$ 81°.

Prove, giving reasons, that $A B D E$ is a parallelogram.

Questions removed:
a) Evaluate $\left(-2.7 \times 10^{-5}\right) \div\left(4.5 \times 10^{8}\right)$ writing your answer in scientific notation correct to 3 significant figures.
e) Evaluate:

$$
\begin{equation*}
-2|-5| \times|-3|+(-4)^{0} \tag{2}
\end{equation*}
$$

d) Simplify $5 \sqrt{27}+\sqrt{3}-2 \sqrt{12}$ leaving your answer in simplest surd form.

$$
\begin{equation*}
\text { i) } \quad 8^{x-1}=\left(\frac{1}{2}\right)^{x} \tag{2}
\end{equation*}
$$

d) Solve by completing the square. Give answer to 3 significant figures.

$$
\begin{equation*}
x^{2}-10 x+7=0 \tag{3}
\end{equation*}
$$

d) Find the area of the shaded region. Give your answer to 2 decimal places .
(2)

\qquad

Teacher: M Shah R Sekaran

E Busch M Johnson
J Meyer K Pittard

YEAR 11
 Assessment 1 April 2011

2U Mathematics

Time Allowed: 50 minutes
Total Marks: 40 marks

General Instructions

- Answer ALL questions on the Examination paper, in the space provided.
- Write using blue or black pen only
- Board approved Calculators may be used
- Write your student number and/or name at the top of the page
- All necessary working should be shown and clearly set out in every question

Question	Mark	Out of:
Q1-Arithmetic		7
Q2-Algebra \& Surds		11
Q3-Equations \& Inequations		13
Q4-Geometry		9
		$\mathbf{4 0}$

Write the answer to each question on the question paper. Show all working.

Question 1

a) Evaluate, correct to 2 decimal places $\sqrt{\frac{23.45^{2}-14.02^{2}}{6.2 \times 13.9}}$

$$
2.02
$$

b) Convert the recurring decimal, $2 . \dot{4} \dot{5}$ to a fraction (rational number). (show all working; without the use of the calculator)

$$
\begin{align*}
\text { Let } N & =2.4545 \ldots \\
100 N & =245 \cdot 4545 \cdots \\
100 N-N & =243 \\
99 N & =243 \\
N & =\frac{243}{99} \\
N & =2 \frac{45}{99} \\
N & =2 \frac{5}{11} \tag{2}
\end{align*}
$$

c) Express without using negative or fractional powers: $(y+4)^{-\frac{2}{3}}$

d) Evaluate $\frac{a^{-3}}{a^{2} b^{-4}}$ when $a=\frac{1}{3}$ and $b=\frac{1}{2}$. Give answer in $\frac{a}{b}$ form.

$$
\left.\begin{array}{rl}
& \frac{a^{-3}}{a^{2} b^{-4}} \tag{2}\\
= & \frac{b^{4}}{a^{5}}
\end{array} \quad=\frac{1}{16} \times \frac{243}{1} .\left(\frac{1}{2}\right)^{4} \div\left(\frac{1}{3}\right)^{5}\right)
$$

Question 2
(11 marks)
a) Simplify:

$$
\text { i) } \begin{align*}
\frac{m^{2}-3 m p}{3 m-9 p} & =\frac{m(m-3 p)}{3(m-3 p)} \tag{2}\\
& =\frac{m}{3}
\end{align*}
$$

ii) $\frac{4}{x-3}-\frac{2}{x}$

$$
\begin{align*}
& =\frac{4 x}{x(x-3)}-\frac{2(x-3)}{x(x-3)} \tag{2}\\
& =\frac{4 x-2 x+6}{x(x-3)} \\
& =\frac{2 x+6}{x(x-3)}
\end{align*}
$$

iii) $\frac{x+5}{3} \div \frac{x^{2}-25}{15}$

$$
\begin{align*}
& =\frac{1}{18} \times 5 \tag{2}\\
& =\frac{15}{(x+5)(x-5)} \\
& =\frac{5}{x-5}
\end{align*}
$$

b) Factorize fully:
i) $8 x^{2} y+20 x y-12 y$

$$
\begin{aligned}
& =4 y\left(2 x^{2}+5 x-3\right) \\
& =4 y(2 x-1)(x+3)
\end{aligned}
$$

ii) $h^{3}+27$

$$
\begin{equation*}
=(n+3)\left(n^{2}-3 n+9\right) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{2 \sqrt{3}}{4-\sqrt{6}} \times \frac{4+\sqrt{6}}{4+\sqrt{6}} \\
& =\frac{2 \sqrt{3}(4+\sqrt{6})}{16-6} \\
& =\frac{8 \sqrt{3}+2 \sqrt{18}}{10} \\
& \sqrt{18}=\sqrt{9 \times 2} \\
& =3 \sqrt{2} \\
& =\frac{8 \sqrt{3}+6 \sqrt{2}}{10} \\
& =\frac{4 \sqrt{3}+3 \sqrt{2}}{5}
\end{aligned}
$$

Question 3
a) Solve:
i)

$$
\begin{aligned}
& x^{2}=7 x \\
& x^{2}-7 x=0 \\
& x(x-7)=0 \\
& x=\infty \quad \infty \quad x=7
\end{aligned}
$$

ii) $\frac{x-3}{3}-\frac{x+5}{2}=4$ $\times 6$ bes.

$$
\begin{align*}
2(x-3)-3(x+5) & =4 \times 6 \tag{2}\\
2 x-6 & =24 \\
-x-15 & =45 \\
x & =-45
\end{align*}
$$

iii) $|2 x-3|=-3 x+7$

$$
\begin{array}{rlrl}
2 x-3=-3 x+7 & \text { or } & -2 x+3 & =-3 x+7 \tag{3}\\
5 x & =10 & x & =4
\end{array}
$$

$$
x=2
$$

Test: $|4-3|=-6+7$

$$
\begin{aligned}
|8-3| & =-3(4)+7 \\
15 \mid & =-5
\end{aligned}
$$

$$
1=1
$$

b) Solve for y and graph the solution on a number line

$$
|2 y-3|>5
$$

$$
\begin{array}{cc}
2 y-3>5 & \quad \text { or }
\end{array}
$$

c) Solve the pair of simultaneous equations

$$
\begin{gather*}
3 x-2 y=11 \tag{1}\\
5 x+y=1
\end{gather*}
$$

$$
\begin{aligned}
2 \times(2) & =2 \\
0 x-2 y & =11 \\
3 x & =13 \\
x & =1
\end{aligned}
$$

(2) $\rightarrow \quad 5 x+y=1$

$$
\begin{array}{rl}
5+y & =1 \\
y=-4 & z=1 \\
y=-4
\end{array}
$$

Question 4
(9 marks)
a) The interior angle of a regular polygon is 150°. How many sides does the polygon have?

$$
\begin{align*}
E x+\text { angle } & =180^{\circ}-150^{\circ} \tag{1}\\
& =30^{\circ} \\
\therefore N o \text { Nf sidles } & =\frac{360^{\circ}}{30^{\circ}}-12
\end{align*}
$$

b) In the figure below, $B E$ is parallel to $C D$.

i) Show that $\triangle A B E$ and $\triangle A C D$ are similar triangles. Give reasons.
$\angle A B E=\angle A C D \quad(\operatorname{corses} \angle i s$ on $B E \| C D)$
$\angle A C O M B E$ and $\triangle A C B$

$$
\therefore \quad \angle A B \quad \triangle A C D \text { similar }(A, A .)
$$

ii) Find the value of x.

$$
\begin{align*}
\frac{1.8}{1.8+1.2} & =\frac{2.4}{x} \tag{2}\\
1.8 x & =2.4 \times 3
\end{align*}
$$

iii) Find the value of y, giving reasons for all your working.

$$
\begin{align*}
y & =180^{\circ}-\left(72^{\circ}+58^{\circ}\right) \quad(\operatorname{sun}+f<i n<) \tag{1}\\
& =50^{\circ}
\end{align*}
$$

c) In the diagram below, $B D=B C, \angle A E D=\angle B C D=67^{\circ}, \angle B A D=32^{\circ}$ and $\angle A D B=81^{\circ}$.

Prove, giving reasons, that $A B D E$ is a parallelogram.

$$
\begin{aligned}
& \angle B D=67^{\circ} \quad(\text { base } \angle \operatorname{Ofl} \sec \operatorname{coles} \angle, \triangle A B D) \\
& \& A E D=\angle B D C=67^{\circ} \\
& \therefore A E \| B D \quad(\text { corresponding } \angle \text { 's on } A E \text { and } B D) \\
& \angle A D E-180^{\circ}-\left(67{ }^{\circ}-81^{\circ}\right) \\
& =32^{\circ} \quad\left(5 t^{\circ} \quad 2\right) \\
& \angle B A=\angle A D E \quad(g i v e n \quad \angle B A D) \\
& =320
\end{aligned}
$$

$\therefore \quad A B \| D E$ (alt. L's on $A B$ and $D E$)
$\therefore A B D E$ is a parallelogram (two pairs of app. sides are parallel)

