

Name:	
Teacher: _	

Set By: LT

Friday 28 February 2003

- Attempt ALL questions.
- Marks may be deducted for insufficient, or illegible work.
- Only Board approved calculators (excluding graphic calculators) may be used.
- Total possible mark is 36.
- Begin each question on a new sheet of paper.
- TIME ALLOWED: 45 minutes

Question 1: (Start on a new page) (10 marks)

Factorise fully:

(a)
$$z^4 - 8z$$
 [2]

(b)
$$9x^2 - 4y^2 - 9x - 6y$$
 [3]

(c) Expand and simplify:

$$\left(x+\frac{1}{x}\right)^2.$$

(d) Evaluate $a^2 + \frac{1}{a}$, where $a = 2 - \sqrt{3}$, leaving your answer in its simplest surd form. [3]

Question 2: (Start on a new page) (8 marks)

- (a) Use index laws to simplify $32^{\frac{-3}{5}}$ and leave your answer as a simplified fraction. [2]
- (b) Simplify as far as possible:

$$\frac{64}{(4^n)^6 \times 16^{1-2n}}.$$

(c) Evaluate $\frac{a^4b^5}{a^2b^7}$ as a fraction in its simplest index form, when $a = \left(\frac{3}{7}\right)^3$ and $b = \left(\frac{5}{7}\right)^6$. [3]

Question 3: (Start on a new page) (11 marks)

(a) Solve
$$|x+3| = 2x-1$$
. [3]

(b) Solve
$$27^{2x-1} = \frac{1}{\sqrt{3}}$$
.

(c) Solve
$$x^2 + 3x - 28 > 0$$
. [2]

(d) Solve
$$\frac{3}{x+4} \ge 2$$

Question 4: (Start on a new page) (7 marks)

Solve the following equations simultaneously:

(a)
$$y-2x=1$$
 [3] $x^2 + y^2 = 10$.

(b)
$$x + y + z = 6$$
 [4] $2x - y + z = 1$ $x + y - 2z = -9$.

END OF TASK