Question 1 (11 Marks)

Marks

(a) Simplify $\quad \frac{\left(2^{3}\right)^{n}\left(4^{2 n-1}\right)}{\left(8^{n}\right)^{\frac{1}{3}}}$.

2
(b) Convert $0.4 \stackrel{\mathrm{~g}}{8} \mathrm{~g}^{\mathrm{g}}$ to a fraction in its simplest terms.
(c) Simplify $\frac{1}{x-y}+\frac{2 x-y}{x^{2}-y^{2}}$.

2
(d) Factorise fully
(i) $2 x^{3}+54$.

2
(ii) $a^{2}-b^{2}-6 b-9$.

Question 2 (9 Marks)

(a) Rearrange the formula $\frac{1}{f}+\frac{3}{g}=\frac{7}{h}$ so that g is the subject.
(b) Expand and simplify $(1-\sqrt{2})^{3}$
(c) Simplify the following by rationalising the denominator.

$$
\frac{\sqrt{10}-\sqrt{6}}{\sqrt{10}+\sqrt{6}}
$$

(d) If $\quad 2 x-y+\sqrt{x-y}=2 \sqrt{3} \quad$ find x and y.

Question 3 (15 Marks) START A NEW PAGE

Marks

(a) Solve $|x+1| \leq 5$.

2

2
(c) Sketch each of the following graphs on separate axes. Label carefully.
(i) $x^{2}+(y-2)^{2}=4$.
(ii) $\quad f(x)=\sqrt{1-x}$.
(d) Consider $f(x)=\frac{2 x}{1-x^{2}}$.
(i) Determine the equation of the vertical and horizontal asymptotes.
(ii) Show that $f(x)$ is odd. $\mathbf{2}$
(iii) Show that $f(x)$ passes through the origin. 1
(iv) Hence sketch the curve. 2

Question 4 (10 Marks) START A NEW PAGE

(a) Solve $\frac{x}{x+5} \leq 2$. 3
(b) Shade the region where $y \leq \sqrt{2-x^{2}}$ and $y>x$ hold simultaneously. Carefully label curves and show points of intersection.
(c) Sketch $y=|2 x-1|$ and $y=x+1$ on the same axes. Find any points of intersection. Hence use your graph to solve $|2 x-1| \leq x+1$.
yEARII ExtENSIOW I ASSESSMENT 12010 Solutions
Quastion [11 Manles]

$$
\begin{aligned}
(\text { a) } \quad & \frac{\left(2^{3}\right)^{n}\left(4^{2 n-1}\right)}{\left(8^{n}\right)^{1 / 3}} \\
= & \frac{2^{2 n} \cdot 2^{6 n-2}}{2^{n}} \\
= & 2^{6 n-2}
\end{aligned}
$$

(b)

$$
\text { (b) } \begin{aligned}
\text { lt } p & =0.485 \\
100 p & =48.585 \\
99 p & =48.1 \\
p & =\frac{481}{990}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{1}{x-y}+\frac{2 x-y}{(x-y)(x+y)} \\
= & \frac{x+y+2 x-y}{(x-y)(x+y)} \\
= & \frac{3 x}{(x-y)(x+y)}
\end{aligned}
$$

(d) (i)

$$
\begin{aligned}
& 2 x^{3}+54 \\
= & 2\left(x^{3}+27\right) \\
= & 2(x+3)\left(x^{2}-3 x+9\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& a^{2}-b^{2}-6 b-9 \\
= & a^{2}-\left(b^{2}+6 b+9\right) \\
= & a^{2}-(b+3)^{2} \\
= & (a-b-3)(a+b+3)
\end{aligned}
$$

Qustion 2 [9 Monks]
(a)

$$
\begin{aligned}
\frac{1}{f}+\frac{3}{g} & =\frac{7}{h} \quad \text { find } g \\
\frac{3}{g} & =\frac{7}{h}-\frac{1}{f} \\
\frac{3}{g} & =\frac{7 f-h}{h f} \\
\frac{g}{3} & =\frac{h f}{7 f-h} \\
g & =\frac{3 h f}{7 f-h}
\end{aligned}
$$

(b)

$$
\begin{aligned}
(1-\sqrt{2})^{3} & =1-3(\sqrt{2})+3(\sqrt{2})^{2}-(\sqrt{2})^{3} \\
& =1-3 \sqrt{2}+6-2 \sqrt{2} \\
& =7-5 \sqrt{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \frac{\sqrt{10}-\sqrt{6}}{\sqrt{10}+\sqrt{6}} \times \frac{\sqrt{10}-\sqrt{6}}{\sqrt{10}-\sqrt{6}} \\
= & \frac{(\sqrt{10}-\sqrt{6})^{2}}{10-6} \\
= & \frac{10-2 \sqrt{60}+6}{4} \\
= & \frac{16-2 \sqrt{60}}{4} \\
= & \frac{16-4 \sqrt{15}}{4} \\
= & 4-\sqrt{15}
\end{aligned}
$$

$$
\begin{gathered}
\text { (d) } 2 x-y+\sqrt{x-y}=2 \sqrt{3} \\
\therefore(2 x-y)+\sqrt{x-y}=\sqrt{12} \\
\therefore 2 x-y=0 \\
x-y=12 \cdots(i i) \\
x=-12[(i)-(i)] \\
y=-24
\end{gathered}
$$

Question 3 [15 monta]

$$
\begin{array}{ll}
\text { (a) }|x+1| \leq 5 & \text { or }-5 \leq x+1 \leq 5 \\
x+1 \leq 5 \text { d } x+1 \geqslant-5 & -6 \leq x \leq 4 \\
\therefore-6 \leq x \leq 4 &
\end{array}
$$

(b) $f(x)=\sqrt{x^{2}-9}$

Domain: $x^{2}-9 \geqslant 0$

$$
\begin{aligned}
& (x-3)(x+3) \geqslant 0 \\
& \therefore x \geqslant 3 \text { or } x \leqslant-3
\end{aligned}
$$

(c) (i) $\quad x^{2}+(y-z)^{2}=4 \quad$ centre $(0,2)$

(ii) $f(x)=\sqrt{1-x} \quad$ Domain: $1-x \geqslant 0$

$$
x \leqslant 1
$$

Questi- 3 (centinued)
(d) $\quad f(x)=\frac{2 x}{1-x^{2}}$
(i) Ventical asomptetes $x= \pm 1$ Honjentel asymptete $f(x)=0$
(ii) $\quad f(-x)=\frac{-2 x}{1-(-x)^{2}}$

$$
\begin{aligned}
& =\frac{-2 x}{1-x^{2}} \\
& =-\left(\frac{2 x}{1-x^{2}}\right) \\
& =-f(x)
\end{aligned}
$$

(ii) let $x=0 \therefore f(0)=\frac{2(0)}{1-0}$

Questios 4
(a)

$$
\begin{gathered}
\frac{x}{x+5} \leqslant 2, x \neq-5 \\
\therefore \frac{x}{x+5} \times \frac{(x+5)^{2}}{1} \leqslant 2 \times(x+5)^{2} \\
x(x+5) \leqslant 2(x+5)^{2} \\
\therefore 2(x+5)^{2}-x(x+5) \geqslant 0 \\
(x+5)[2 x+10-x] \geqslant 0 \\
(x+5)(x+10) \geqslant 0 \\
\therefore \quad x>-5 \text { or } x \leqslant-10
\end{gathered}
$$

[deducti for (\$5]
(b) $y \leq \sqrt{2-x^{2}}$ and $y>x$ -

$$
\lambda y^{=x}
$$

$$
\sqrt{-} \text { both grapha }
$$

$$
V \text {-pto ofintersection }
$$

$$
2 \text { dottl lime }
$$

$$
V \text {-correct sbading }
$$

(c)
\sqrt{V} - Comect graphs
$\sqrt{ }$ - $\sin x=2$
\checkmark - cormect solution.

0

$$
(2,3) 6 t
$$

$$
\begin{array}{r}
\begin{array}{r}
x=\sqrt{2-x^{2}} \\
\begin{aligned}
& x^{2}=2-x^{2} \quad x^{2}=1 \\
& x=1 \\
&
\end{aligned} \\
\text { let } 2 x-1=x+1 \\
x=2
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \frac{1}{2}>Y \\
& |2 x-1| \leqslant x+1 \\
& 0 \leqslant x \leqslant 2
\end{aligned}
$$

