Question 1 (12 Marks)

(a) Factorise
(i) $y^{3}-125$
(ii) $1-x-x^{2}+x^{3}$
(b) Solve $2 x^{2}=7 x-5$
(c) Solve $x^{2}+2 x-5=0$ by completing the square. Give your answers correct to two decimal places.

Question 2 (12 Marks) Start a new page

(a) Solve for x : $3 x^{2}+6 x-7=0$, Leave your answer in simplest surd form.
(b) Simplify
(i) $\frac{x+2}{x-2}-\frac{x-2}{x+2}$
(ii) $\frac{2 x-y}{y^{2}-x y-2 x^{2}}$
(c) The perimeter of a rectangle is 40 cm and its area is $84 \mathrm{~cm}^{2}$.
(i) If the width of the rectangle is x, express the length in terms of x.
(ii) Write down the area of the rectangle in terms of x.
(iii) Form a quadratic equation in x and solve it to find the length and width of the rectangle.
(a) Simplify $\frac{x^{2}-2 x-3}{2 x^{2}-3 x-5} \times \frac{4 x^{2}-25}{(x-3)(2 x+5)}$.
(b) Simplify $\quad 2 \sqrt{8}-\sqrt{18}$.
(c) If $\frac{\sqrt{3}-4}{2+\sqrt{3}}=a+b \sqrt{3}$, find a and b.
(d) Find the domain and range of
(i) $\quad f(x)=(1+x)^{2}-1$
(ii) $f(x)=-\sqrt{9-x^{2}}$

Question 4 (12 Marks) Start a new page

(a) Draw a neat sketch of each of the graphs below.
(i) $y=\frac{1}{x}$.
(ii) $y=\frac{1}{x+3}-2$. State the y-intercept and the equation of each asymptote.
(b) Find the simultaneous solution for the following equations:

$$
x^{2}+y^{2}=1681 \text { and } x y=360
$$

End of Paper

Ext Assersmet 12012 Solution
Q1 (a) (i) $y^{3}-125=(y-5)\left(y^{2}+5 y+25\right)$
((1B) (ii)

$$
\begin{align*}
1-x-x^{2}+x^{3} & =(1-x)-x^{2}(1-x) \tag{2}\\
& =(1-x)\left(1-x^{2}\right) \\
& =(1-x)(1-x)(1+x) \quad \text { (3) } \\
& =(1-x)^{2}(1+x)
\end{align*}
$$

(b)

$$
\begin{aligned}
& 2 x^{2}-7 x+5=0 \\
& (2 x-5)(x-1)=0 \\
& x=\frac{5}{2} \quad x=1 \\
& \text { (c) } \quad x^{2}+2 x+1=5+1 \\
& (x+1)^{2}=6 \\
& x+1= \pm \sqrt{6} \\
& x=-1 \pm \sqrt{6} \\
& x=+1.45,-3.45 \\
& \text { Nivinig }=0 \\
& \text { (ore) a (smin lut } \\
& \text { (3) mark. }
\end{aligned}
$$

Question 2
a) $3 x^{2}+6 x-7=0$

$$
\begin{aligned}
x & =\frac{-6 \pm \sqrt{36-4 \times 3 \times-7}}{2 \times 3} \\
& =\frac{-6 \pm \sqrt{120}}{6} \\
& =\frac{-6 \pm 2 \sqrt{30}}{6} \\
& =\frac{-3 \pm \sqrt{30}}{3}
\end{aligned}
$$

b) i)

$$
\begin{aligned}
&\left.\frac{(x+2)(x+2)-(x-2)(x-2)}{(x-2)(x+2)}, \quad i i\right) \\
&= \frac{x^{2}+4 x+4-\left(x^{2}-4 x+4\right)}{x^{2}-4} \\
&= \frac{8 x-y}{x^{2}-4} \\
&==\frac{-1}{y+x} \\
&y-2 x)(y+x) \\
& y
\end{aligned}
$$

c)

$$
\begin{aligned}
2(x+y) & =40 \\
x+y & =20 \\
y & =20-x
\end{aligned}
$$

i) $\underset{\text { length }}{\text { i) }}=20-x$
ii) Area $=(20-x) x$
iii) $(20-x) x=84$

$$
\begin{aligned}
& 20 x-x^{2}=84 \\
& 0=x^{2}-20 x+84 \\
& 0=(x-14)(x-6)
\end{aligned}
$$

Yearll Ext 1 Assessment) 2012
03

$$
\text { (a) } \begin{align*}
& \frac{x^{2}-2 x-3}{2 x^{2}-3 x-5} \times \frac{4 x^{2}-25}{(x-3)(2 x+5)} \\
= & \frac{(x-3)(x+1)}{(2 x-5)(x+1)} \times \frac{(2 x-5)^{2}(2 x+5)}{(x-3)(2 x+5)} \tag{3}
\end{align*}
$$

(b)

$$
\text { (b) } \begin{align*}
& 2 \sqrt{8}-\sqrt{18}=4 \sqrt{2}-3 \sqrt{2} \tag{2}\\
&=\sqrt{2} \\
& \text { (c) } \begin{aligned}
\frac{\sqrt{3}-4}{2+\sqrt{3}} & =\frac{\sqrt{3}-4}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} \\
& =\frac{2 \sqrt{3}-3-8+4 \sqrt{3}}{4-3} \\
\therefore a & =-11 \text { ardd } b=6
\end{aligned} \tag{3}
\end{align*}
$$

(d) (1) $f(x)=(1+x)^{2}-1$

Domain: All real x
Range: $y: y \geqslant-1$

$$
\text { (11) } f(x)=-\sqrt{9-x^{2}}
$$

Damain: $-3 \leq x \leq 3$,
Range: $-3 \leq y \leq 0$

Solutions o Marking Scheme

$$
\begin{equation*}
y-\text { int }=\frac{1}{3}-2=-\frac{5}{3} \tag{1}
\end{equation*}
$$

asymptotes: $x=-3, y=-2$
(b) $x^{2}+y^{2}=1681$

$$
2 x y=720
$$

$$
\text { (1) } \begin{align*}
&+(2) \tag{2}\\
&(x+y)^{2}=2401 \\
& x+y= \pm 49
\end{align*}
$$

$$
\begin{equation*}
x+y=49 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
x+y=-49 \tag{4}
\end{equation*}
$$

(1) - (2)

$$
\begin{array}{r}
(x-y)^{2}=961 \\
x-y= \pm 31 \\
x-y=31-\text { (5) } \\
x-y=-31=\text { (6) } \tag{6}
\end{array}
$$

$$
\left\{\begin{array}{l}
(3)+\text { (5) } \Rightarrow x=40 \\
\text { sub in (3) }, y=9 \\
\text { (3) }+ \text { (6) } \Rightarrow x=9 \\
\text { subin (3) } y=40 \\
\text { (4) }+ \text { (5) } \Rightarrow x=-9 \\
\text { sub in (4) }, y=-40 \\
\text { (4) }+ \text { (6) } \Rightarrow x=-40
\end{array}\right.
$$

sub in (4),$y=-9$
\therefore Solution:

$$
\begin{aligned}
& x=40, y=9 \text { or } x=9, y=40 \\
& \text { or } x=-40, y=-9 \text { or } x=-9, y=
\end{aligned}
$$

Part (t)
mark for each solutio, 1 mark for demonstratec method
or
1 mark for a correct substitution of $\frac{360}{x}$ or $\frac{36 c}{y}$ 1 Mark for an attempt to form quad eqn to infind x^{2}. or compl. square in x^{2}.
1 mark for $x^{2}=k$, x 时
1 mark for one correct solution

1 mark for all correct solutions.

