Name: \qquad Teacher: \qquad

YEAR 11 MATHEMATICS ASSESSMENT TASK - JUNE 2008

Time Allowed: 60 minutes

Full working should be shown in every question..
Marks may be deducted for careless or badly arranged work.
No liquid paper is to be used.
If a correction is to be made, one line is to be ruled through the incorrect answer.

Marks

1. Find the exact value of
a) $\tan 300^{\circ}$
b) $\operatorname{cosec}\left(-225^{\circ}\right)$
2.

2

How many sides does it have?
4. Find x (no reasons required)

5. If $\sin \theta=\frac{4}{7}$ and $\cos \theta<0$ find the exact value of $\tan \theta$
7. Show that $3 x+4 y+25=0$ is a tangent to the circle $x^{2}+y^{2}=25$
8. Solve for $0 \leq \theta \leq 360^{\circ}$
a) $\quad \operatorname{Sin} \theta=\frac{\sqrt{3}}{2}$

2

3
c) $\sec 2 \theta=\cos 2 \theta$
9. Find the exact value of x in the following, if the triangles below are similar.

10.

i) Find the gradient of $\mathrm{AB} \quad 1$
ii) Find M, the midpoint of $A B$
iii) Find the equation of the line ℓ through M perpendicular to AB
iv) Show that $\mathrm{C}(5,0)$ lies on the line $\ell \quad 1$
v) If $A B$ has equation $x-y+3=0$ find the perpendicular distance from C to $A B$
vi) If MCEB is a rectangle find the area of the trapezium ABEC
11.

$A B C D$ is a rectangle. $A B$ is produced to E such that $B D \| C E$
i) Prove $\triangle \mathrm{ABD} \equiv \triangle \mathrm{BCE}$
ii) If $\mathrm{AB}: \mathrm{BC}=2: 1$ find $\angle \mathrm{BEC}$
12. a) Sketch the graphs of $y=\cos x$ for $0 \leq x \leq 360^{\circ}$ and $y=1 / 2$ on the same set of axes
b) For what values of x in the domain $0 \leq \mathrm{x} \leq 360^{\circ}$ is $\cos x \geq 1 / 2$.
13. Two planes leave Sydney at the same time. One flies 300 nm northwest to Point A. The other flies 420 nm on a bearing of 251° to Point B.

i) \quad Show $\angle \mathrm{ASB}=64^{\circ}$
ii) What is the distance AB ?
iii) What is the bearing of B from A ?
14. Show $\frac{\cot \theta-\tan \theta}{\cos \theta-\sin \theta}=\operatorname{cosec} \theta+\sec \theta$
15.

i) Show $\mathrm{AD}=\frac{B C}{\cos \beta}$
ii) Prove $\mathrm{BC}=\frac{x \cos \alpha \cos \beta}{\operatorname{Sin}(\alpha-\beta)}$

$$
\begin{aligned}
& \text { i. a } \tan 300=-\tan 60^{\circ} \\
&=-\sqrt{3} \\
& \text { b) } \operatorname{cosec}(-225) \\
&= \frac{1}{\sin 135^{\circ}} \\
&= \frac{1}{\frac{1}{\sqrt{2}}} \\
&= \sqrt{2}
\end{aligned}
$$

2. $\quad \tan 41^{\circ} 18^{\prime}=\frac{x}{15}$

$$
\begin{aligned}
x= & 15 \tan 41^{\circ} 18^{\prime} \\
& =13.18 .
\end{aligned}
$$

3. $\frac{180(n-2)}{n}=150^{\circ}$

$$
180 n-360=150 n
$$

$$
30 n=360
$$

$$
n=12
$$

$$
\therefore 12 \text { sides. } 2
$$

4.

$$
\begin{aligned}
3 x+30 & =5 x \\
x & =15^{\circ}
\end{aligned}
$$

Solutions:-
$\underbrace{\substack{7 / 2 \\ \operatorname{Din}^{33}}}_{\sqrt{33} \rightarrow \text { by Dy th. }}$
6. $2 x+20+3 x-80=90^{\circ}$

$$
5 x-60=90
$$

$$
x=30^{\circ}
$$

7. $3 x+4 y+25=0$ (for algebraic

If $3 x+4 y+25=0 \quad$ s 4 see $)$ is a tangent to $x^{2}+y^{2}=25$
then $d=5$ units.
ie $\frac{|3(0)+4(0)+25|}{\sqrt{3^{2}+4^{2}}}=d$

$$
d=\frac{25}{5}
$$

$$
d=5
$$

$\therefore 3 x+4 y+25=0^{\circ}$ is a tangent
8.a) $\sin \theta=\frac{\sqrt{3}}{2}$

$$
\therefore \theta=60^{\circ}, 120^{\circ} \quad 2
$$

b)

$$
\begin{aligned}
& 2 \cos ^{2} \theta=2+\sin \theta \\
& 2\left(1-\sin ^{2} \theta\right)=2+\sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 2 \sin ^{2} \theta+\sin \theta=0 \\
& \sin \theta(2 \sin \theta+1)=0 \\
& \sin \theta=0 \quad \sin \theta=-\frac{1}{2}
\end{aligned}
$$

$$
\therefore \theta=0,180^{\circ}, 360^{\circ}, 210^{\circ}, 330^{\circ}
$$

9. Bc) $x^{\text {See bottom of last page }}=6$

$$
\frac{x}{x+6}=\frac{6}{x+2}
$$

$$
x(x+2)=6 x+36
$$

$$
x^{2}+2 x-6 x-36=0
$$

$$
x^{2}-4 x-36=0
$$

$$
\begin{aligned}
x & =\frac{4 \pm \sqrt{16-4.1 .-36}}{2} \\
& =\frac{4 \pm \sqrt{160}}{2} \\
& =\frac{4 \pm 4 \sqrt{10}}{2} \\
& =2 \pm 2 \sqrt{10} \text { but } x>0 \\
& \therefore x=2+2 \sqrt{10}
\end{aligned}
$$

(accept $\frac{4+4 \sqrt{10}}{2}$) 4

$$
10_{(1)} m_{A B}=\frac{6-2}{3-1}=1
$$

(ii) $M\left(\frac{3+-1}{2}, \frac{6+2}{2}\right)$

$$
=m(1,4)
$$

(iii).

$$
\begin{aligned}
y-4 & =-1(x-1) \\
y & =-x+5
\end{aligned}
$$

(iv) sub in $(5,0)$

$$
\begin{aligned}
& 0=-5+5 \\
& 0=0
\end{aligned}
$$

$\therefore(5,0)$ lies on

$$
y=-x+5
$$

(v)

$$
\begin{aligned}
& d=\frac{|1(5)+-1(0)+3|}{\sqrt{1^{2}+(-1)^{2}}} \\
& d=\frac{8}{\sqrt{2}}
\end{aligned}
$$

(VI) Area of fropesium

$$
=3 \times \triangle A M C
$$

$A M=\sqrt{(1--1)^{2}+(4-2)^{2}}$

$$
=\sqrt{8}
$$

$\therefore \triangle A M C=\frac{1}{2} \cdot \sqrt{8} \cdot \frac{8}{\sqrt{2}}$

$$
\therefore \text { Trapezium }^{\text {Area }}=84 \text { unit }^{2} 3
$$

Alternative $E(7,2)$

$$
A B=\sqrt{32} \quad C E=\sqrt{8}
$$

$$
\begin{align*}
\therefore \text { Trap. } & =\frac{1}{2} \cdot \frac{8}{\sqrt{2}}(\sqrt{32}+\sqrt{8}) \\
& =\frac{8}{2 \sqrt{2}}(4 \sqrt{2}+2 \sqrt{2}) \\
& =\frac{48 \sqrt{2}}{2 \sqrt{2}} \\
& =24 \text { units }^{2} \tag{3}
\end{align*}
$$

11.

$$
\begin{aligned}
& \text { (i) } \angle D A B=90^{\circ}=\angle A B C \text { (Angles of } \\
& \text { a rect.) } \\
& \angle C B E=90^{\circ} \text { (straight } \angle \text {) } \\
& \therefore \angle D A B=\angle C B E
\end{aligned}
$$

$A O=B C$ (Opposite sides of a
$\angle A B D=\angle A E C$ (Corresponding 23 on 11 lina)

$$
\therefore \triangle A B D \equiv \triangle B E C(A A S)
$$

(ii) $\tan \angle B E C=\frac{1}{2}$

$$
\therefore \angle B E C=26^{\circ} 34^{\prime} 2
$$

$\cos x=\frac{1}{2}$ when $x=60^{\circ}, 300^{\circ}$ $\cos x \geqslant \frac{1}{2}$ for

$$
0 \leq x \leq 60^{\circ}, \quad 300^{\circ} \leq x \leq 360^{\circ}
$$

13/

(i) $\angle A S B=360-\left(251+45^{\circ}\right)$
$=64^{\circ}$
(ii) $a^{2}=300^{2}+420^{2}-2 .(300)(420)(\cos 64 \cdot$ $a=394.88 \mathrm{n} . \mathrm{m}$.

$$
\text { (ii) } \begin{aligned}
\frac{\sin \angle B A S}{420} & =\frac{\sin 64}{394.88} \\
\sin \angle B A S & =\frac{420 \sin -64}{394.88} \\
\angle B A S & =72^{\circ} 56^{\prime} \\
\therefore \text { Bearing } & =116^{\circ}+72^{\circ} 56^{\prime} \\
& =188^{\circ} 56^{\prime} 3
\end{aligned}
$$

14/ $\frac{\cot \theta-\tan \theta}{\cos \theta-\sin \theta}=\frac{\operatorname{cosec} \theta}{+\sec \theta}$

$$
\angle H S=
$$

$$
\begin{aligned}
& \frac{\frac{\cos s}{\sin \theta}-\frac{\sin \theta}{\cos \theta}}{\cos \theta-\sin \theta} \\
& \frac{\cos ^{2} \theta-\sin ^{2} \theta}{\sin \theta \cos \theta} \div \frac{1}{\cos \theta-\sin \theta} \\
& =\frac{(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)}{(\sin \theta \cos \theta)(\cos \theta-\sin \theta)} \\
& =\frac{1 \cos \theta}{\sin \theta \cos \theta}+\frac{\sin \theta-1}{\sin \theta \cos \theta} \\
& =\operatorname{cosec} \theta+\sec \theta 3
\end{aligned}
$$

(i)

$$
\begin{aligned}
\cos \beta & =\frac{D E}{A D} \quad b+D E=B C \\
\therefore \quad \cos \beta & =\frac{B C}{A D} \\
\therefore A D & =\frac{B C}{\cos \beta}-(1) 2
\end{aligned}
$$

(i) $\angle C A D=\alpha-\beta$

$$
\begin{aligned}
& \therefore \frac{x}{\sin (\alpha-\beta)}=\frac{A D}{\sin (90-\alpha)} \\
& \therefore A D=\frac{x \sin (90-\alpha)}{\sin (\alpha-\beta)} \\
& \quad=\frac{x \cos \alpha}{\sin (\alpha-\beta)}
\end{aligned}
$$

from (1) $B C=A D \cos \beta$

$$
\therefore B C^{\prime}=\frac{x \cos \alpha \cos \beta}{\sin (\alpha-1)} 3
$$

question 7. (Algetsraic aly)

$$
\begin{gathered}
3 x+4 y+25=0 \Rightarrow y=\frac{-25-3 x}{4} \\
x^{2}+y^{2}=25 \\
\therefore x^{2}+\left(\frac{-25-3 x}{16}\right)^{2}=25 \\
x^{2}+\frac{625+150 x+9 x^{2}}{16}=25 \\
16 x^{2}+625+150 x+9 x^{2}=400 \\
25 x^{2}-150 x+225=0 \\
x^{2}-6 x+9=0 \\
(x-3)^{2}=9 \\
\therefore x=3 \\
y=4
\end{gathered}
$$

\therefore Only lpt of intersectio:
$\therefore 3 x+4 y+25=0 \quad 15$ a
targent to $x^{2}+y^{2}=25$.
8c)

$$
\sec 2 \theta=\cos 2 \theta
$$

$$
\begin{aligned}
& \frac{1}{\cos 2 \theta}=\cos 2 \theta \\
& \cos ^{2} 2 \theta=1 \\
& \cos 2 \theta= \pm 1
\end{aligned}
$$

