

| 6. | | Not to Scale |
| :--- | :--- | :--- | :--- | :--- |

1. a) $\cos 225^{\circ}=-\cos 45^{1 / 47}$
(1)
b)

$$
\begin{aligned}
\cot \left(-120^{\circ}\right) & =\cot 240^{\circ} \\
& =\cot 60^{\circ} \\
& =\frac{1}{\sqrt{3}}
\end{aligned}
$$

2.

$$
\begin{align*}
& 2 \cos \theta+1=0 \\
& \cos \theta=-\frac{1}{2} \\
& a=180-60^{\circ}, 180+60^{\circ} \\
& =120^{\circ}, 240^{\circ} \tag{2}
\end{align*}
$$

3a) (i) $x=55^{\circ}$
(ii)

$$
\begin{align*}
& \text { i) } \left.\begin{array}{r}
\frac{a}{3}=\frac{5}{a+1} \\
a^{2}+a-15=0
\end{array}\right\} \tag{1}\\
& \begin{aligned}
a & =\frac{-1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot-15}}{2} \\
& =-\frac{1 \pm \sqrt{61}}{2}
\end{aligned} \tag{1}
\end{align*}
$$

$a>0 \therefore \quad a=\frac{-1+\sqrt{61}}{2}$ (1)
e) $(4,1)^{(1)}=\frac{\sqrt{1^{2}+4^{2}}}{\sqrt{17}}$
c) $y-2=-\frac{1}{4}(x-6)$

$$
\begin{align*}
& 4 y-8=-x+6 \tag{1}\\
& x+4 y-14=0 \\
& \hline
\end{align*}
$$

d) $d=|1(0)+4(-4)+-14| \mid$

Area $=2\left(\frac{1}{2} \times \frac{30}{\sqrt{n}} \cdot 2 \sqrt{n}\right)^{*}$
(f) $\geqslant 10, y \geqslant 0$ and

7.

(1)
$\cos 128^{\circ}$
(1) $\begin{aligned} & A D=B C \text { (opp. siden of a red), } \\ & A x=Y C\end{aligned}$
(1) $A X=Y C$ give:
(1) $\angle A=\angle C=90^{\circ}$ (Angles ina
(F). $\triangle A X D \equiv \triangle B Y C\left(S_{A S}\right)$.
b) $A B=C D$ (opp.sider of $\alpha \quad$ red $1 O_{a}$ LHS $=\frac{\cos \theta}{1-\sin \theta}-\frac{\cos Q}{1+\tan \alpha}$

$$
\therefore \quad \Delta^{x}=\Delta y
$$

Since Bx\|l Dy (orithe opp.
Then $x+10$ in α pacallologran (lpair gIl equal sida) (1) since XByD if a porallelayna $x y+B D$ bisect each ${ }^{\text {other (1) }}$
9.

$$
\left.\begin{array}{rl}
5 x^{2} & =20^{2} \\
x^{2} & =80 \tag{1}\\
x & =4 \sqrt{5}
\end{array}\right\}
$$

\therefore Hary walked $4 \sqrt{5} \mathrm{~km}$
(ii)

$$
\tan \theta=\frac{1}{2}
$$

$$
\theta=26^{\circ} 34^{\prime}(1)
$$

Bearirs $=\begin{gathered}360^{-}-\left(135+26^{\circ} 34^{\prime}\right) \\ = \\ 198^{\circ} 26^{\prime}\end{gathered}$
b)

$$
\begin{aligned}
& \therefore \begin{array}{r}
\text { solve } \\
2 \tan \theta
\end{array} \frac{\cot b}{2 \tan \theta}=\frac{1}{\tan \theta} \\
& \therefore \tan ^{2} \theta=\frac{1}{2} \text { (1) }
\end{aligned}
$$

$\tan a= \pm \frac{1}{\sqrt{2}}$

$$
\sin x=\cos x
$$

whe $\tan x=1$ ie $x=45^{\circ}$, 225°

$$
\begin{aligned}
& \sin x \geqslant \cos x \\
& 45^{\circ} \leqslant x \leqslant 225^{\circ}
\end{aligned}
$$

12. Sotve for $0 \leq 0 \leq 360^{\circ}$
$24^{2} 2-5 \operatorname{sic} \theta+5=01$

$$
2\left(\sec ^{2} \theta-1\right)-5 \sec \theta+5=0
$$

$$
2 \sec ^{2} \theta-5 \sec \theta+3=0
$$

$$
(2 \sec \theta-3)(\sec \theta-1)=
$$

$$
\operatorname{sect} \theta=\frac{3}{2} \quad \sec \theta=1
$$

$$
\therefore \cos \theta=\frac{2^{2}}{3} \cos \theta=1
$$

$$
\theta=\frac{\left.4 \xi^{\prime \prime} 1\right)^{\prime}-311^{\circ} 49^{\prime}, 0,360}{\frac{1}{A}}
$$

In $\triangle A C D \cdot \frac{A D}{\sin \beta}=\frac{x}{\sin (1506 \%}$

$$
\therefore A D=\frac{x \sin \beta}{\sin (\alpha+\beta)}(1)
$$

(ii) (B)

$$
\begin{aligned}
& \therefore \frac{B D}{\sin \alpha}=\frac{x \sin \beta}{\left.\sin (\alpha+)^{\circ}\right)} \\
& \therefore B_{D}=\frac{x \sin \left(\alpha+\theta^{2}\right)}{\sin \sin \sin)}
\end{aligned}
$$

