	BAULKHAM HILLS HS FURNE PERSEVENT FOR SEVENT FOR SEVENT	
DIRE	 Full working should be shown in every question. Marks may be deducted for carel badly arranged work. Use black or blue pen only (<i>not pencils</i>) to write your solutions. No liquid paper is to be used. If a correction is to be made, one line is to be ruled t the incorrect answer. 	
1.	Find the exact value of a) $\cos 225^{\circ}$ b) $\cot (-120^{\circ})$	1
2.	Solve for $0 \le \theta \le 360^{\circ}$ $2\cos\theta + 1 = 0$	2
3.	a) i) Find the value of x° , (no reason required) Not to Scale A A A B $AB \parallel CE \parallel DF$ and EC = CD ii) If $CD = a$, $DE = 5$, $BC = 3$ and $AE = a + 1$, find the exact value of a	1
	b) Not to Scale A B C B	1
4.	The ratio of the interior to the exterior angles of a regular polygon is 4 : 1	
	a) Find the size of each exterior angleb) How many sides does the polygon have?	1 1
5.	If $\tan \theta = \frac{2}{3}$ and $\sin \theta < 0$, find the exact value of $\cos \theta$	2

6.	A(-2,4) Not to Scale				
	B(6,2) x $C(0,-4)$				
	a) Find the gradient of AB	1			
	b) Find the distance of <i>AB</i>	1			
	c) Show the equation of the line AB is $x + 4y - 14 = 0$	1			
	d) Find the perpendicular distance from C to the line AB	1			
	e) Find the point <i>D</i> such that <i>ADBC</i> is a parallelogram	1			
	f) Find the area of the parallelogram <i>ADBC</i>	1			
	g) Using inequalities, describe the shaded region above	1			
7.	Joe walks 6 kms due east then 8 km on a bearing of 142°. Draw a diagram representing this information and find how far Joe is from his starting point	3			
8.	Not to Scale $ABCD$ is a rectangle X and Y lie on AB and CD respectively such that $AX = YC$				
	a) Prove $\triangle AXD \equiv \triangle BCY$ b) Prove that <i>BD</i> and <i>XY</i> bisect each other	3 2			
9.	 Hayden and Harry leave a point A. Hayden travels northwest and Harry travels southeast. Hayden and Harry are then 20 kms apart. a) If Hayden travelled twice as far as Harry, how far did Harry walk? b) What is the bearing of Harry's position from Hayden's? 	2 2			
10.	a) Prove $\frac{1+\tan^2 x}{1+\cot^2 x} = \tan^2 x$				
		2			
	b) Hence solve $\frac{1 + \tan^2 x}{1 + \cot^2 x} = 2 \tan x$ for $0 \le x \le 360^{\circ}$	3			
11.	a) On the same set of axes, sketch the graphs of $y = sin x$ and $y = cos x$ for $0 \le x \le 360^{\circ}$	2			
	b) Hence, find the values of x in this domain for which $\sin x \ge \cos x$	2			
12.	For $0 \le x \le 360^\circ$ solve $2\tan^2 \theta - 5\sec\theta + 5 = 0$	4			
13.	$AC = x \text{ and } DB \perp AC$ $AC = x \text{ and } DB \perp AC$ $BD = \frac{x \sin \alpha \sin \beta}{\sin (\alpha + \beta)}$	3			
	~ END OF EXAM ~				

AB=CD (opp. sider of a 6) 12. Solve for 0505 360' 10a) LHS = COSO red.) 1. 1-Sin 244-0-55+10+5=0 Car + call so - as BX = BY. A + 6005 .--2 (secto-1) - 5 seco + 5= 7-5-20 Since BX || DY (on the ,a 23-0 000 2 see 20 - 55age + 3 =10 ca340 (\mathbb{D}) Hen XBID is a parallelogram -3)(200-2sec0 (| pair eg val. side b) Seco = 3Seco = 1 2 tang = CO Since X8 YD in 000 a porrilela Coso XY+BD bisect each jother tand Q = 4811, 31648, 9, 360 0 = 누 (\mathcal{D}) 9. tanc = ± Hayd (i) South 2L T = 3516', 144°47',21516' 0 AC=x 13. 20 km. 324 441 (1)In SABD diag Ð Sind = BD é. 11. 1 Harry . £, AD <u>BD</u> (1) AD 🗢 **(D)** 5512=20 369 $a^2 = 80$ \odot I, -1 AD In AACD >2 41.5 X = . Harry walked 455 km Sin (1801 Sin x = cosx AD = x sing (4 ie x = 45° 225 (ii) when 1an 24=1 tanio = sin(a+p) (\mathbf{D}) = 260841 1 0 Sinx 7 cosx e Sir BD Bearing = 360- (135+26'34' 45' ≤ x ≤ 225 (1) Sind 19826 BU_