

Year 11 Mathematics Assessment Task 3 June 4 2012

Name: _____

- Attempt ALL questions.
- Marks may be deducted for insufficient or illegible work.
- Only Board approved calculators (excluding graphic calculators) may be used.
- Total possible mark is 42
- Begin each question on a new sheet of paper.
- TIME ALLOWED: 40 minutes plus 2 minutes reading time.

Question 1

6 marks

a) Select the alternative A, B, C or D to answer questions i) to v).

i) Which expression correctly calculates the area of \triangle ABC?

A
$$\frac{1}{2}ab\cos C$$

B
$$\frac{1}{2}ab\sin C$$

C
$$\frac{a\sin C}{b}$$

$$D \qquad \frac{b^2 + a^2 - c^2}{2ab}$$

ii) What are the asymptotes of the graph
$$y = \frac{2}{x+1}$$
?

A
$$x = -1, y = 0$$

B
$$x = 2, y = 0$$

C
$$x=0$$
, $y=1$

D
$$x = 0$$
, $y = -1$

Question 1 a) continued

- iii) How many points of intersection are there for the graphs y = 3x and $y = x^3$?
- A 0
- B 1
- C 2
- D 3
- iv) When the parabola $y = x^2$ is translated 2 units to the right and 4 units up, the new equation of the parabola is?
- A $y = (x+2)^2 + 4$
- $B y = 4(x+2)^2$
- C $y = (x-2)^2 + 4$
- D $y = (x-4)^2 + 2$
- v) Given: f(x) is an odd function. Which of the following statements correctly describes the graph of f(x)?
- A It is symmetrical about the y-axis.
- B It is symmetrical about the x-axis.
- C It is symmetrical about the origin.
- D It is symmetrical about the line y = x.
- b) Solve the inequality $1-2x \le 3$

1

Question 2 6 marks START A NEW PAGE

- a) Given: $\cos \theta = \frac{5}{\sqrt{41}}$ and $\tan \theta$ is negative. Find the value of $\sin \theta$.
- b) Sketch y = |x| + 2 clearly showing any intercepts on the coordinate axes.
- c) Find the exact value of tan 45° sin 60°. Write your answer as a single fraction.
- d) The bearing of A from B is 116°. What is the bearing of B from A?

Question 3 6 marks START A NEW PAGE

- a) Solve the equation $\tan \theta = -\sqrt{3}$ for $0^{\circ} \le \theta \le 360^{\circ}$
- b) Determine algebraically whether the function $f(x) = x^2 1$ is odd, even or neither.
- c) Sketch the intersection of the regions $y \ge 2^x$, $y \le 3$ and $x \ge 0$ on a number plane.

Question 4 6 marks START A NEW PAGE

- a) The equation $y = x^2 + 2x + 5$ represents a parabola.
 - i) Find the equation of the axis of symmetry and hence calculate the coordinates of the vertex.
 - ii) Sketch the parabola.
 - iii) Explain why the equation $x^2 + 2x + 5 = 0$ has no solutions.

2

1

b) Prove that $1 + \cot^2 \theta = \frac{1}{1 - \cos^2 \theta}$

Question 5

6 marks

START A NEW PAGE

a) i) Solve $x^2 - x - 6 \ge 0$

2

ii) Graph the solution to part i) on a number line.

1

b) In \triangle ABC, $\angle A = 40^{\circ}$, a = 4cm and c = 6cm. What is the size of $\angle C$? Answer to the nearest degree.

3

Question 6

6 marks

START A NEW PAGE

a) Solve |1+x| = 3x.

3

b) An isosceles triangle has base angles of 30°. Using the sine rule, or otherwise, determine the ratio of the base length to the length of one of the sides?

3

Question 7

6 marks

START A NEW PAGE

NOT TO SCALE

The diagram shows a square ABCD of side xcm, with a point P within the square, such that PC = 6cm, PB = 2cm and $AP = 2\sqrt{5}$ cm. Let $\angle PBC = \theta$.

a) Using the cosine rule in triangle PBC, show that $\cos \theta = \frac{x^2 - 32}{4x}$.

1

b) By considering triangle PBA show that $\sin \theta = \frac{x^2 - 16}{4x}$.

1

c) Hence, or otherwise, show that the value of x is a solution of $x^4 - 56x^2 + 640 = 0$.

2

d) Using the substitution $m = x^2$, find all possible values of x.

2

END OF ASSESSMENT

LEAR ! ASSESSMENT TASK 3

SOLUTIONS.

Question 1.

$$\mathcal{O}$$

$$\mathcal{O}$$

$$(4) /-2x \le 3$$
$$-2x \le 2$$

Question 2.

a)
$$\cos \theta = \frac{5}{\sqrt{44}}$$
, tun $\theta < 0$

× 2 -1 (1)

$$\begin{array}{ccccc}
\sqrt{4} & & & & & \\
\sqrt{4} & & & & \\
\sqrt{5} & & & & \\
\sqrt{5} & & & & \\
\end{array}$$

(c)
$$+ am 45^{\circ} - Ain 60^{\circ}$$

= $/ - \frac{\sqrt{3}}{2}$ (f)

$$= \frac{2-\sqrt{3}}{2} \mathcal{O}$$

Bearing of B from A is 296°

Question 3.

a)
$$tan 0 = -\sqrt{3}$$
 $0^{\circ} \le 0 \le 360^{\circ}$
related angle = 60°.
 $0 = 120^{\circ}$, 300°

(1)
$$f(x) = x^2 - 1$$

 $f(x) = (x)^2 - 1$
 $= x^2 - 1$
 $= f(x) = f(x)$ (1)
Since $f(x) = f(x)$, $f(x)$ is even.

(c)
$$y \ge 2^x$$
, $y \le 3$, $z \ge 0$

$$y = 2^x \quad y = 3^x \quad y = 3^x \quad y = 3 \quad 1$$
intersection 1

Question 4.

a) i)
$$y = x^2 + 2x + 5$$

Axis of symmetry, $z = \frac{-a}{2a}$

$$x = -1 \quad \text{(1)}$$
Vertex $(-1, 4)$ (1)

iii) x2+2x+5=0 has no solution es y = x2+2n+5 does not intersect the x-uzis.

$$1 + \cot^2 \theta = \cot^2 \theta \quad 0$$

$$= \frac{1}{1 - \cos^2 \theta}$$

$$= \frac{1}{1 - \cos^2 \theta}$$

Question 5
a) i)
$$x^2-x-6>0$$

 $(x-3)(x+2)>0$

Question 6

Checking rolution,

MA INB a = sin A 1 $= \frac{\sqrt{3}/2}{\sqrt{2}} \quad \text{(1)}$ = 13

.. Langth of base : langth of side is 53:1

a)
$$\cos \theta = \frac{\chi^2 + 2^2 - 6^2}{2 \times 2 \times 2} = \frac{\chi^2 - 32}{4 \times 2}$$

$$\begin{array}{cccc}
(1) & \angle ABP = 90-\Theta \\
(20) & (90-\Theta) = 2^{2} + 2^{2} - (25)^{2} \\
\hline
& 2 \times 2 \times 2
\end{array}$$

:.
$$\sin \phi = \frac{x^2 - 16}{4x}$$

(c) sin 20+cos 20 = /

$$\therefore \left(\frac{x^2 - 16}{4x}\right)^2 + \left(\frac{x^2 - 32}{4x}\right)^2 = 1$$

264-642c2+1024+x4-32x2+256=16221 2x4-1/2x2 +1280 =0

d)
$$m^2 - 56m + 640 = 0$$

 $(m - 40)(m - 16) = 0$ 0

: x2=40 - x2=16 :.x= 40 or 4