	→ \ 0
NAME:	TIEA CITIED.
NAME:	TEACHER:

SYDNEY TECHNICAL HIGH SCHOOL

2 Unit Mathematics

Preliminary HSC

Year 11

Assessment Task 2

July, 2011

Time Allowed:

70 minutes

General Instructions:

- Each question attempted is to be started on a NEW PAGE, clearly marked with the number of the question, your name and class on the top right hand side of the page
- Write using black or blue pen
- APPROVED CALCULATORS may be used
- All necessary working should be shown. Marks may be deducted if working is poorly set out or difficult to read.

Question	TOTAL							
1	2	3	4	5	6	7	8	
/8	/8	/8	/8	/8	/8	/8	/8	/64

Question 1 (8 marks)

a) Evaluate $(\frac{1}{5})^{-1.2}$ correct to 3 significant figures.

2

b) Find a and b such that $\frac{1}{\sqrt{5-2}} = a + b\sqrt{5}$

2

c) Write the equation of the circle with centre (-3,4) and radius 6 units.

2

1

d) Solve |2x + 3| = 9.

e) Write the domain of the function $f(x) = \sqrt{6-x}$.

1

Question 2 (8 marks) Start a new page

a) Solve $x^2 = 5x$.

2

b) Factorise $3x^2 + x - 2$.

1

c) Find the exact value of θ such that $2\cos\theta = 1$ if $0 \le \theta \le 90^\circ$.

2

d) i) Sketch $y = 9 - x^2$ showing x and y intercepts.

2

ii) Find the range of $y = 9 - x^2$.

1

Question 3 (8 marks) Start a new page

a) Let M be the midpoint of (-1,4) and (5,8).

3

Find the equation of the line through M with gradient $-\frac{1}{2}$ (write your answer in general form).

b) Prove that $\frac{\sin\theta}{1-\cos\theta} + \frac{\sin\theta}{1+\cos\theta} = 2\csc\theta$.

3

c) ABCDE is a regular pentagon. The points P, Q, E and A are collinear. The points Q, D and C are also collinear.

Find the size of angle a giving reasons.

2

Question 4 (8 marks) Start a new page

In the diagram, ABCD is a quadrilateral. The equation of the line AD is 2x - y - 1 = 0.

- a) Show that ABCD is a trapezium by showing that BC is parallel to AD.
- b) The line CD is parallel to the x-axis. Find the coordinates of D.
- c) Find the length of BC.
- d) Show that the perpendicular distance from B to AD is $\frac{4}{\sqrt{5}}$.
- e) Hence, or otherwise, find the area of the trapezium ABCD.

 (simplify your answer fully) 2

Question 5 (8 marks) Start a new page

- a) If $\sin(3x 20^{\circ}) = \cos(2x + 50^{\circ})$ find x.
- b) In the diagram below, AE = AC, $EAC = 80^{\circ}$ and $ACD = 105^{\circ}$.

1

3

2

2

Prove, with full reasoning, that EB = EC

c) R NOT TO SCALE 70° Q

The diagram shows a point P which is 30 km due west of the point Q.

The point R is 12 km from P and has a bearing from P of 070°.

- i) Find the distance of R from Q (to nearest km).
- ii) Find the bearing of R from Q (to nearest degree).

Question 6 (8 marks) Start a new page

a) Find x and y such that
$$x + y - \sqrt{x - y} = 18 - 2\sqrt{3}$$
.

b) Solve the simultaneous equations

$$4x - y = 9$$
$$3xy = -6$$

c) i) Sketch the function defined as follows

$$f(x) = \begin{bmatrix} 0 & if \ x \le -3 \\ -1 & if -3 < x < 0 \\ x^2 & if \ x \ge 0 \end{bmatrix}$$
 3

ii) Find
$$f(a^2)$$
 1

Question 7 (8 marks) Start a new page

a) Solve
$$5x^2 - 12x + 4 < 0$$
.

b) If
$$sin\theta = \frac{-1}{\sqrt{13}}$$
 and $tan \theta > 0$ find the exact value of $cos\theta$.

c) Solve in the domain $0 \le \theta \le 360^{\circ}$

i)
$$2\cos^2\theta = 1$$

ii)
$$(sin\theta - 1)(2sin\theta - 1) = 0$$
 2

Question 8 (8 marks) Start a new page

a) A rocket launched vertically from L is observed from A. Soon after launch when at position M its angle of elevation is 25°. After it climbs 4000 metres from this position to N its angle of elevation is 66°.

2

2

2

2

- i) Find ANL and NAM.
- ii) Find AM to the nearest metre.
- iii) Find how far the observer is, horizontally from the launch pad.

 (answer to nearest metre)
- b) Solve $3sin\theta = 2cos\theta$ if $-180^{\circ} \le \theta \le 180^{\circ}$. Write your solutions correct to the nearest minute.

2 unit MATHS YEAR 11 2011 Task 2 (August)

Question 1

- x) 6.90 (3 sig. fig)
- o) $\frac{1}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} = \frac{\sqrt{5}+2}{1}$ $\therefore a=2 \ b=1$
- $(x+3)^{2}+(y-4)^{2}=36$
- 1) 2x+3=9 2x+3=-9 2x=6 2x=-12x=3 and x=-6
-) 6-3c>0
- D: 3(≤6

Question 2

 $x^{2}-5x=0$ $x(x-5)=0 \qquad \therefore x=0, x=5$

3x X-2

-) 3x²+x-2
 - $\frac{(3\circ(-2)(\circ(+1))}{2\cos\theta=1}$ $\cos\theta=\frac{1}{2}$ $\theta=60$
- - ii) R: _ 4 4 9

Question 3

- a) M(2,6) $y-6=\frac{-1}{2}(31-2)$ 2y-12=-31+2x+2y-14=0
- b) LHS = $\frac{\sin \theta}{1-\cos \theta} + \frac{\sin \theta}{1+\cos \theta}$ $= \frac{\sin \theta(1+\cos \theta)+\sin \theta(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)}$ $= \frac{\sin \theta+\sin \theta.\cos \theta+\sin \theta-\sin \theta\cos \theta}{1-\cos^2 \theta}$ $= \frac{2\sin \theta}{\sin^2 \theta}$
 - = 2 cosec 0 = RHS = ODE = 72 (ext. angle of
- c) OED = ODE = 72 (ext. angle of regular pentagon)

 .. d = 144 (angle sum of triangle)

Question 4

- a) 2x-y-1=0 y = 2x-1 y = 2 $y = \frac{5-3}{1-0} = 2$
- · MAD = MBC · AD ||BC
- b) D(3,5)
- c) $8C = \sqrt{(1-0)^2 + (5-3)^2}$ = $\sqrt{1+4}$ = $\sqrt{5}$ units

$$P = \begin{vmatrix} 2 \times 0 - 1 \times 3 - 1 \\ \sqrt{2^2 + 1^2} \end{vmatrix}$$

$$= \begin{vmatrix} -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{vmatrix}$$

$$\therefore P = \frac{4}{\sqrt{5}}$$

e) area ABCD = 1. 4 (BC+AD)

BC=15 from abore

BC = $\sqrt{5}$ from above AD = $\sqrt{(3-0)^2 + (5-1)^2}$ = $\sqrt{4+36}$ = $\sqrt{4+5}$ = $\sqrt{4+5}$

- .: Area = 1. 4 (15 + 315)
 = 1. 4 (15 + 315)
 - = 8 unit2

Question 5

- a) 3x-20+(2x+50)=90 5x+30=90 5x=60 $6x=12^{\circ}$
- b) EBC= 25°(ext. angle of triangle)

 ACE = 50° (opp equal sides isos. triangle)

 .: ECB = 25°(angles on straight line)

 .: EB = EC (opp equal angles in
 1505celes triangle)

) 12 P 20° P Q

RQ= 122+302-2×12×30× cos 200 RQ= 19km (to nearest km)

- ii) $\frac{\sin \theta}{12} = \frac{\sin 20^{\circ}}{19}$ $\sin \theta = \frac{12 \sin 20^{\circ}}{19}$
 - $\theta = 12.47^{\circ}$ $\theta = 12^{\circ}$ to hearest oleg.
- bearing R from Q

(if using cosine Rule and 19km > 282°T)

a) x+y=18 7 x-y=12

201 = 30

- $2x = 15 \quad y = 3$
- b) 401-y=9 y=401-9

 - 4012 901 + 2 =0
 - 4 or X-1
 - (4x-1)(x-2)=0
 - $\begin{cases} x = \frac{1}{4} \text{ and } \begin{cases} x = 2 \\ y = -8 \end{cases}$
- c) i) $\int_{a}^{y} f(a) = a^{4}$

a)
$$50(^{2}-120(+4<0)$$
 $5x - 2$
 $(5x - 2)(x - 2) < 0$
 $x = 2$
 $x = 2/6$

i)
$$2\cos^2\theta = 1$$

$$\cos^2\theta = \frac{1}{2}$$

$$\cos^2\theta = \frac{1}{\sqrt{12}}$$

$$\sin^2\theta = \frac{1}{\sqrt{12}$$

Sin
$$\theta = 1$$
 9 Sin $\theta = \frac{1}{2}$ Sin $\theta = \frac{1}{2$

(a) i)
$$ANL = 24$$

 $N\widehat{A}M = 41^{\circ}$
(ii) $AM = 41^{\circ}$
 $AM = 4000$
 $AM = 4000$

3 sin
$$\theta = 2 cos \theta$$
 $\frac{sin \theta}{cos \theta} = \frac{2}{3}$
 $\frac{sin \theta}{cos \theta} = \frac{2}{3}$