

BAULKHAM HILLS HIGH SCHOOL

Half -Yearly 2015 YEAR 11 TASK 1

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 1 hour
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 6-9
- Marks may be deducted for careless or badly arranged work

Total marks – 44 Exam consists of 5 pages.

This paper consists of TWO sections.

Section 1 - Page 2 (5 marks)

• Attempt Question 1-5

Section II – Pages 3-5 (39 marks)

• Attempt questions 6-9

Answer all questions in the appropriate space in the Answer booklet provided.

Section I – Multiple Choice - 5 marks

1. Solve for *x*,

$$\frac{2x+1}{1-x} \ge 1$$
(A) $0 \le x < 1$
(B) $x \le 0$ or $x > 1$
(C) $x > 0$ or $x > 1$
(D) $0 < x \le 1$

2. A rectanglular prism with a square base ABCD, is shown below. The diagonal of the prism, AH = 8cm, the height of the prism, HC = 4cm.

The volume of this rectangular prism is

(A) $64 cm^3$ (B) $96cm^3$ (C) $128cm^3$ (D) $192cm^3$

3. The domain of the function
$$f(x) = (4 - x^2)^{-\frac{1}{2}}$$

(A) $x \le -2 \text{ or } x \ge 2$ (B) x < -2 or x > 2 (C) $-2 \le x \le 2$ (D) -2 < x < 2

4. If the equation f(2x) - 2f(x) = 0 is true for all real values of x, then f(x) could be (A) $\frac{x^2}{2}$ (B) 2x

(C)
$$\sqrt{2x}$$
 (D) $x - 2$

- 5. Ten people are to be seated around a circular table. How many possible seating arrangements are there if two particular friends want to sit directly opposite each other?
 - (A) $2 \times 8!$ (B) $2 \times 9!$ (C) $4! \times 4!$ (D) 8!

End of Section 1

Section II – Extended Response Attempt questions 6-9. All necessary working should be shown in every question.

Question 6 (10 marks)

Prove the identity a)

$$\frac{2\sin^3 x + 2\cos^3 x}{\sin^2 x + \sin x \cdot \cos x} = 2\csc x - 2\cos x$$

Marks

2

$$in^2 x + sinx. cosx = 200300$$

Determine if the function b) 2 $f(x) = x^2 + \cos x$ is odd, even or neither. Show all working. Solve 3 c) $x^2 + 2$

$$\frac{x^2+2}{x} \ge 2x-1$$

d) ,	A committee of 5 is to be chosen from 6 men and 8 women. Find how many committees are possible, if		
	i)	the committee will consist of 3 men and 2 women.	1
	ii)	there is at least one woman on the committee.	2

Question 7 (10marks)

a)	(i) Sketch on the same number plane the graph of $y = \sqrt{3-x}$ and $y = x-1 $.	2
	(ii) Hence or otherwise solve $\sqrt{3-x} \le x-1 $	2
b)	Solve the equation $3 \cot \theta = tan\theta + 2$ for $0^{\circ} \le \theta \le 360^{\circ}$, giving your answer correct to the nearest minute.	3
c)	Factorise completely $x^5 + x^2y^2(y-x) - y^5$	3

a) A bushwalker walking on a horizontal straight road PQ observes that from his position P the bearing of a hill FR is 337° and he notices the peak R of the hill at an angle of elevation of 37°. After walking 200metres, he arrives at Q. The angle of elevation of R from Q is 12° and Q is due east of the hill.

		1
i)	Show that $FP = h \tan 53^{\circ}$	
ii)	By finding a similar expression for <i>FQ</i> , show that	2
	$200^{2} = h^{2} \tan^{2} 53^{\circ} + h^{2} \tan^{2} 78^{\circ} - 2h^{2} \tan 53^{\circ} \tan 78^{\circ} \cos 67^{\circ}$	1
iii)	Hence find the height of the tower.	1

- b), At a dinner party, the host, hostess and their six guests sit at a round table. In howmany ways can they be arranged, if the host and hostess are not sitting together?
- c) How many different numbers greater than 6000 can be formed with
 2 the digits 4, 5, 6, 7, 8 if no digit is used more than once?

Question 9 (11 marks)

Marks

a) '	(i)	How many different arrangements of the letters of the word ISOSCELES are possible?	2	
	(ii)	How many of these arrangements have all S's together?	2	
	(iii)	How many of them have the letter S as the first and last letter?	2	
b)	Given a function $y = \frac{x}{9 - x^2}$			
	(i)	Find all the asymptotes of the function.	2	
	(ii)	Determine whether the function is even, odd or neither. Justify your answer.	1	
	(iii)	Sketch the curve.	2	

End of Exam

P