BAULKHAM HILLS HIGH SCHOOL

Half -Yearly 2015
YEAR 11 TASK 1

Mathematics Extension 1

General Instructions

- Reading time - 5 minutes
- Working time -1 hour
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 6-9
- Marks may be deducted for careless or badly arranged work

Total marks - 44
Exam consists of 5 pages.

This paper consists of TWO sections.

Section 1 - Page 2 (5 marks)

- Attempt Question 1-5

Section II - Pages 3-5 (39 marks)

- Attempt questions 6-9

Answer all questions in the appropriate space in the Answer booklet provided.

Section I - Multiple Choice - $\mathbf{5}$ marks

1. Solve for x,

$$
\frac{2 x+1}{1-x} \geq 1
$$

(A) $0 \leq x<1$
(B) $x \leq 0$ or $x>1$
(C) $x>0$ or $x>1$
(D) $0<x \leq 1$
2. A rectanglular prism with a square base $A B C D$, is shown below. The diagonal of the prism, $A H=8 \mathrm{~cm}$, the height of the prism, $H C=4 \mathrm{~cm}$.

The volume of this rectangular prism is
(A) $64 \mathrm{~cm}^{3}$
(B) $96 \mathrm{~cm}^{3}$
(C) $128 \mathrm{~cm}^{3}$
(D) $192 \mathrm{~cm}^{3}$
3. The domain of the function $f(x)=\left(4-x^{2}\right)^{-\frac{1}{2}}$
(A) $x \leq-2$ or $x \geq 2$
(B) $x<-2$ or $x>2$
(C) $-2 \leq x \leq 2$
(D) $-2<x<2$
4. If the equation $f(2 x)-2 f(x)=0$ is true for all real values of x, then $f(x)$ could be
(A) $\frac{x^{2}}{2}$
(B) $2 x$
(C) $\sqrt{2 x}$
(D) $x-2$
5. Ten people are to be seated around a circular table. How many possible seating arrangements are there if two particular friends want to sit directly opposite each other?
(A) 2×8 !
(B) 2×9 !
(C) $4!\times 4$!
(D) 8 !

End of Section 1

Section II - Extended Response

Attempt questions 6-9.
All necessary working should be shown in every question.
Question 6 (10 marks) Marks
a) Prove the identity $2 \sin ^{3} x+2 \cos ^{3} x \quad 2$

$$
\frac{2 \sin ^{3} x+2 \cos ^{3} x}{\sin ^{2} x+\sin x \cdot \cos x}=2 \operatorname{cosec} x-2 \cos x
$$

b) Determine if the function
$f(x)=x^{2}+\cos x$ is odd, even or neither. Show all working.
c) Solve

$$
\frac{x^{2}+2}{x} \geq 2 x-1
$$

d). A committee of 5 is to be chosen from 6 men and 8 women. Find how many committees are possible, if
i) the committee will consist of 3 men and 2 women.
ii) there is at least one woman on the committee.

Question 7 (10marks)
a) (i) Sketch on the same number plane the graph of $y=\sqrt{3-x}$ and $y=|x-1|$. 2
(ii) Hence or otherwise solve $\sqrt{3-x} \leq|x-1| \quad 2$
b) Solve the equation $3 \cot \theta=\tan \theta+2$ for $0^{\circ} \leq \theta \leq 360^{\circ}$, giving your answer
correct to the nearest minute.
c) Factorise completely $x^{5}+x^{2} y^{2}(y-x)-y^{5} \quad 3$

Question 8 (8 marks)

a) A bushwalker walking on a horizontal straight road $P Q$ observes that from his position P the bearing of a hill FR is 337° and he notices the peak R of the hill at an angle of elevation of 37°. After walking 200 metres, he arrives at Q. The angle of elevation of R from Q is 12° and Q is due east of the hill.

i) Show that $F P=h \tan 53^{\circ}$
ii) By finding a similar expression for $F Q$, show that 2

$$
200^{2}=h^{2} \tan ^{2} 53^{\circ}+h^{2} \tan ^{2} 78^{\circ}-2 h^{2} \tan 53^{\circ} \tan 78^{\circ} \cos 67^{\circ}
$$

iii) Hence find the height of the tower.
b) : At a dinner party, the host, hostess and their six guests sit at a round table. In how many ways can they be arranged, if the host and hostess are not sitting together?
c) How many different numbers greater than 6000 can be formed with the digits $4,5,6,7,8$ if no digit is used more than once?
a) (i) How many different arrangements of the letters of the word ISOSCELES are 2 possible?
(ii) How many of these arrangements have all S's together? 2
(iii) How many of them have the letter S as the first and last letter? 2
b) Given a function
$y=\frac{x}{9-x^{2}}$
(i) Find all the asymptotes of the function.
(ii) Determine whether the function is even, odd or neither. Justify your answer. 1
(iii) Sketch the curve. 2

