YEAR 11 MATHEMATICS EXTENSION HALF YEARLY EXAMINATION 2016 SOLUTIONS

Solution	Marks	Comments
SECTION I		
1. $\mathbf{D}-\cos \left(90^{\circ}+\alpha\right)=-\cos \left(90^{\circ}-\alpha\right)$ $\begin{aligned} & =-\sin \alpha \\ & \neq \sin \alpha \end{aligned}$	1	
$\text { 2. } \begin{aligned} \mathbf{B}-{ }^{n} \mathbf{C}_{2} & =\frac{n!}{2!(n-2)!} \\ & =\frac{n(n-1)}{2} \\ & =\frac{n^{2}-n}{2} \end{aligned}$	1	
3. $\mathbf{C}-2$ solutions	1	
4. $\begin{aligned} \hline \text { A - Ways } & ={ }^{15} \mathbf{C}_{10} \times 10 & \text { OR } & \text { let correct } \end{aligned}=C \text { wrong }=W ~\left(\begin{array}{rl} \text { blank } & =B \\ & =3003 \times 10 \\ & =30030 \end{array}\right.$	1	
5.	1	

Solution	Marks	Comments
SECTION II		
QUESTION 6		
	3	3 marks - Correct graphical solution on number line or algebraic solution, with correct working 2 marks - Bald answer - Identifies the two correct critical points via a correct method - Correct conclusion to their critical points obtained using a correct method 1 mark - Uses a correct method - Acknowledges a problem with the denominator. 0 marks - Solves like a normal equation, with no consideration of the denominator.
$6 \text { (b) } \quad \begin{aligned} \text { \# selections } & ={ }^{6} \mathbf{C}_{2} \times{ }^{14} \mathbf{C}_{2}+{ }^{6} \mathbf{C}_{3} \times{ }^{14} \mathbf{C}_{1}+{ }^{6} \mathbf{C}_{4} \times{ }^{14} \mathbf{C}_{0} \\ & =1365+280+15 \\ & =1660 \end{aligned}$	2	2 marks - Correct solution 1 mark - Correctly calculates one case
6 (c) (i) $\begin{aligned} a+\frac{1}{a} & =\frac{5-\sqrt{5}}{5+\sqrt{5}}+\frac{5+\sqrt{5}}{5-\sqrt{5}} \\ & =\frac{(5-\sqrt{5})^{2}+(5+\sqrt{5})^{2}}{(5+\sqrt{5})(5-\sqrt{5})} \\ & =\frac{2\left(5^{2}+(\sqrt{5})^{2}\right)}{5^{2}-(\sqrt{5})^{2}} \\ & =\frac{60}{20} \\ & =3 \end{aligned}$	2	2 marks - Correct solution 1 mark - Progress towards a correct solution
6 (c) (ii) $\begin{aligned} a^{2}+\frac{1}{a^{2}} & =\left(a+\frac{1}{a}\right)^{2}-2 \times a \times \frac{1}{a} \\ & =3^{2}-2 \\ & =7 \end{aligned}$	2	2 marks - Correct solution 1 mark - Progress towards a correct solution
6(d) Only two possible combination of digits $=43$ $\begin{array}{lrl} \text { Case 1: } 9+9+9+9+7=43 & \text { Case 2: } 9+9+9+8+8=43 \\ \text { Ways }=\frac{5!}{4!} & =\frac{5!}{3!2!} \\ =5 \end{array} \quad \begin{aligned} & =10 \end{aligned}$	3	3 marks - Correctly solution 2 marks - Identifies two correct cases - Correctly evaluates the number of possibilities in one case 1 mark - Attempts to evaluate one of the correct cases
6(e)	3	3 marks - Correct region making note of which boundaries and points of intersection are included 2 marks - Both boundaries correct with only one region correct - Region correct, however boundary incorrectly identified 1 mark - One boundary correctly identified

Solution	Marks	Comments
QUESTION 7		
$\text { 7(a) (i) } \quad \begin{aligned} \text { Ways } & =8! \\ & =40320 \end{aligned}$	1	1 mark - Correct answer
$\text { 7(a) (ii) } \quad \begin{aligned} \text { Ways } & =2!\times 7! \\ & =10080 \end{aligned}$	2	2 marks - Correct solution 1 mark - Treats L \& V as one object - Calculates \# of arrangements of L \& V
$\text { 7(a) (iii) } \quad \begin{aligned} \text { Ways } & =1 \times 1 \times 6! \\ & =720 \end{aligned}$	2	2 marks - Correct solution 1 mark - Correctly handles restriction
$7 \text { (b) } \begin{aligned} 3 \sin ^{2} x+2 \sin x & =6 \cos x+9 \sin x \cos x \\ 3 \sin ^{2} x+2 \sin x-6 \cos x-9 \sin x \cos x & =0 \\ \sin x(3 \sin x+2)-3 \cos x(2+3 \sin x) & =0 \\ (3 \sin x+2)(\sin x-3 \cos x) & =0 \end{aligned} \quad \tan x=3$	3	3 marks - Correct solution 2 marks - Finds one correct answer for $\tan x$ 1 mark - Correctly factorises the terms or equivalent merit
$\text { 7(c) (i) } \begin{aligned} \text { Ways no restrictions } & =\frac{11!}{4!4!2!} \\ & =34650 \end{aligned}$	1	1 mark - Correct answer
$\text { 7(c) (ii) } \begin{aligned} \text { Ways I's together } & =\frac{8!}{4!2!} \\ & =840 \end{aligned} \quad \begin{aligned} \text { Ways I's not together } & =34650-840 \\ & =33510 \end{aligned}$	2	2 marks - Correct solution 1 mark - Calculates \# ways I’s together - Uses the complementary event idea
7 (d) (i)$\frac{D F}{h}$ $=\tan 75^{\circ}$ $D F$ $=h \tan 75^{\circ}$ $B u t \mathrm{BC}$ $=\mathrm{FD}$ $\therefore B C$ $=h \tan 75^{\circ}$	1	1 marks - Correct solution
7 (d) (ii)$A B$ $=h \tan 60^{\circ}$ $A C$ $=2 h \tan 60^{\circ}$	1	1 marks - Correct answer
7 (d) (iii) $\begin{aligned} \cos \theta & =\frac{h^{2} \tan ^{2} 60^{\circ}+4 h^{2} \tan ^{2} 60^{\circ}-h^{2} \tan ^{2} 75^{\circ}}{4 h^{2} \tan ^{2} 60^{\circ}} \\ & =\frac{5 \tan ^{2} 60^{\circ}-\tan ^{2} 75^{\circ}}{4 \tan ^{2} 60^{\circ}} \\ & =\frac{15-\tan ^{2} 75^{\circ}}{12} \\ & =0.89316 \ldots . . \\ \theta & =84^{\circ} 53^{\prime} \end{aligned}$ \therefore bearing of the tower is $N 85^{\circ} E$	2	2 marks - Correct solution 1 mark - Correct substitution into the cosine rule

Solution	Marks	Comments
QUESTION 8		
$8 \text { (a) } \quad \begin{aligned} \# \text { Ways } & =3!\times 4! \\ & =144 \end{aligned}$	2	2 marks - Correct solution 1 mark - Correctly deals with circle arrangement as opposed to line arrangement - Correctly deals with the alternation
	3	3 marks - Correct graphical solution on number line or algebraic solution, with correct working 2 marks - Bald answer - Identifies the three correct critical points via a correct method - Correct conclusion to their critical points obtained using a correct method 1 mark - Uses a correct method - Acknowledges a problem with both denominator. 0 marks - Solves like a normal equation , with no consideration of the denominator.
	3	3 marks - Correctly identifies the two correct answers 2 marks - Finds one answer after rejecting its conjugate - Finds four answers including the correct two 1 mark - Identifies two correct cases
$8 \text { (c) (i) } \quad \begin{aligned} f^{2}(x) & =\frac{\left(\frac{x+\sqrt{3}}{1-x \sqrt{3}}\right)+\sqrt{3}}{1-\left(\frac{x+\sqrt{3}}{1-x \sqrt{3}}\right) \sqrt{3}} \\ & =\frac{x+\sqrt{3}+\sqrt{3}-3 x}{1-x \sqrt{3}}-x \sqrt{3}-3 \\ & \left.=\frac{-2 x+2 \sqrt{3}}{-2-2 x \sqrt{3}}\right) \\ & =\frac{x-\sqrt{3}}{1+x \sqrt{3}} \end{aligned}$	1	1 marks - Correct solution
$8 \text { (c) (ii) } \quad \begin{aligned} f^{3}(x) & =\frac{\left(\frac{x-\sqrt{3}}{1+x \sqrt{3}}\right)+\sqrt{3}}{1-\sqrt{3}\left(\frac{x-\sqrt{3}}{1+x \sqrt{3}}\right)} \\ & =\frac{x-\sqrt{3}+\sqrt{3}+3 x}{1+x \sqrt{3}-x \sqrt{3}+3} \\ & =\frac{4 x}{4} \\ & =x \end{aligned}$	1	1 marks - Correct solution
8 (c) (iii) As $f^{3}(x)=x$ then $\quad f^{4}(x)=f(x), f^{5}(x)=f^{2}(x), f^{6}(x)=f^{3}(x)=x$, etc $\therefore f^{2016}(x)=f^{3}(x)=x$	1	1 marks - Correct solution

