2017 Preliminary
 Half Yearly Examination

Mathematics Extension I

General Instructions

- Reading time - 5 minutes
- Working time - 1 hour and 30 minutes
- Write using black or blue pen
- Board-approved calculators may be used
- In Questions 11 - 14, show relevant mathematical reasoning and/or calculations

Total marks - 54

Section I Pages 2-4
10 marks

- Attempt Questions 1 - 10
- Allow about 15 minutes for this section

Section II Pages 5-8
44 marks

- Attempt Questions 11 - 14
- Allow about 1 hour and 15 minutes for this section

Section I

10 marks
Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the multiple-choice answer page in the writing booklet for Questions 1-10.

1 How many numbers greater than 40000 can be formed with the digits 2, 3, 4, 5 and 6 if no digit is used more than once?
(A) 48
(B) 72
(C) 96
(D) 120

2 In how many ways can a family of eight sit around a circular table if the two youngest family members want to sit together?
(A) 7 !
(B) 2×5 !
(C) 2×6 !
(D) 2×7 !

3 What is the domain of the function $y=\frac{1}{\sqrt{4-x^{2}}}$?
(A) $x>2$
(B) $x<2$
(C) $-2<x<2$
(D) $x<-2$ or $x>2$

4 If $2 \sec \theta+3=0$, and $\cot \theta>0$, what is the exact value of $\sin \theta$?
(A) $-\frac{\sqrt{5}}{3}$
(B) $-\frac{\sqrt{5}}{2}$
(C) $\frac{\sqrt{5}}{3}$
(D) $\frac{\sqrt{5}}{2}$

5 How many value(s) of θ, for $0^{\circ} \leq \theta \leq 360^{\circ}$, satisfy the equation $\sin \theta \cos \theta=\sin \theta$?
(A) 2
(B) 3
(C) 4
(D) 5
$6 \quad A B C D E F G H$ is a cube of side length p, what is the area of $\triangle A F H$ in terms of p ?
(A) $\frac{p^{2} \sqrt{3}}{4}$
(B) $\frac{p^{2} \sqrt{3}}{2}$
(C) $\frac{p^{2}}{4}$
(D) $\frac{p^{2}}{2}$

7 For $0^{\circ} \leq \alpha \leq 90^{\circ}$, the least value of $\frac{30}{3 \sin ^{2} \alpha+2 \sin ^{2}\left(90^{\circ}-\alpha\right)}$ is:
(A) 15
(B) 10
(C) 6
(D) 5

8 When solving $\frac{x-1}{\sqrt{x}}>\frac{2}{x-1}$ within the natural domain, three students obtain the following inequalities:

Student 1: $\quad(x-1)^{2}>2 \sqrt{x}$
Student 2: $\quad(x-1)^{3}>2(x-1) \sqrt{x}$
Student 3: $\quad(x-1)^{3} \sqrt{x}>2 x(x-1)$

Which student(s) will obtain the correct solution to the original inequality?
(A) Student 1 only
(B) Student 2 only
(C) Student 3 only
(D) Both students 2 and 3

9 If $f(x+1)=x^{4}-2 x+1$, what is the value of $f(0)$?
(A) 0
(B) 1
(C) 2
(D) 4

10 Given that n and r are both positive integers such that $n \geq r$, which of the following is NOT always true?
(A) ${ }^{n} P_{1}={ }^{n} C_{1}$
(B) ${ }^{n} P_{n}={ }^{n} C_{n}$
(C) ${ }^{n} P_{r}={ }^{n} C_{r} \times r$!
(D) ${ }^{n} P_{r} \geq{ }^{n} C_{r}$

Section II

44 marks

Attempt Questions 11 - 14
Allow about 1 hour and 15 minutes for this section
Answer each question in the appropriate section of the writing booklet. Extra writing paper is available.

In Questions $11-14$, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (11 marks) Use the Question 11 section of the writing booklet.
(a) Solve $\frac{x}{x-4} \leq 5$.
(b) The letters A, E, I, O and U are vowels. In how many ways can the letters of the word MATHEMATICS be arranged in a line if:
(i) there are no restrictions?
(ii) the vowels are all together?
(iii) both the letter M's must be immediately followed by the letter \mathbf{A} ?
(c)
(i) Solve $x^{4}-4 x^{2}+3=0$.
(ii) Hence, or otherwise, solve $\tan ^{4} \theta-4 \tan ^{2} \theta+3=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(d) Sketch the region on the Cartesian plane satisfying the inequality $y<-\sqrt{x-1}$.

End of Question 11

Question 12 (11 marks) Use the Question 12 section of the writing booklet.
(a) A footpath on horizontal ground has two parallel edges. $C D$ is a vertical flagpole of height h metres which stands with its base, C, on one edge of the footpath. A and B are two points on the other edge of the footpath such that $A B=7 \mathrm{~m}$ and $\angle A C B=60^{\circ}$.

From A and B, the angles of elevation of the top of the flagpole, D, are 30° and 60° respectively.

(i) Show that $B C=\frac{h}{\sqrt{3}}$.
(ii) Find a similar expression for $A C$.
(iii) Hence, find the exact height of the flagpole.
(iv) Find the exact width of the footpath.
(b) From a group of 6 men and 8 women, a committee of 5 people is to be chosen, how many ways can this committee be formed if:
(i) there are no restrictions?
(ii) the committee consists of 2 men and 3 women?
(iii) the committee must have at least 1 woman?
(iv) the entire committee is of the same gender?

End of Question 12

Question 13 (11 marks) Use the Question 13 section of the writing booklet.
(a) Consider the function $f(x)=x^{2}-|2 x|-3$.
(i) Show that $f(x)$ is an even function.
(ii) Hence, or otherwise, sketch the graph of $y=f(x)$, showing all intercepts.
(iii) What is the range of $y=f(x)$?
(b)
(i) On the same set of axes, sketch the graphs of $y=|2 x-4|$ and $y=|x+1|$, 2 showing all intercepts.
(ii) Hence, or otherwise, solve the inequality $|2 x-4| \leq|x+1|$.
(c)
(i) Fully factorise $64 k^{6}-1$ as a difference of two squares and as a difference of two cubes.
(ii) Hence, or otherwise, factorise $16 k^{4}+4 k^{2}+1$.

End of Question 13

Question 14 (11 marks) Use the Question 14 section of the writing booklet.
(a) A train is leaving Town A, heading towards Town B without turning around. There are 13 train stations between the two towns:

> Key : Station
(i) In how many ways can the train stop at 4 of the 13 stations?
(ii) In how many ways can the train stop at 4 of the 13 stations if the train does not stop at consecutive stations?
(b) Show that $\frac{\left(\sin ^{2} \alpha-\cos ^{2} \alpha\right)(1-\sin \alpha \cos \alpha)}{\cos \alpha(\sec \alpha-\operatorname{cosec} \alpha)\left(\sin ^{3} \alpha+\cos ^{3} \alpha\right)}=\sin \alpha$.
(c) It can be shown that:

$$
\tan (A+B+C)=\frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A} \text { (DO NOT PROVE THIS.) }
$$

(i) For any $\triangle A B C$, explain why $\tan A+\tan B+\tan C=\tan A \tan B \tan C$.
(ii) It is given, for $\triangle X Y Z$, that $\frac{\tan X}{5}=\frac{\tan Y}{6}=\frac{\tan Z}{7}=k$ for some constant k, show that $k=\sqrt{\frac{3}{35}}$.
(iii) Hence calculate the size of the smallest angle in $\triangle X Y Z$ correct to the nearest minute.

End of Paper

