

YEAR 11 HALF YEARLY EXAMINATION 2017 MATHEMATICS EXTENSION 1 MARKING GUIDELINES

Section I

Multiple-choice Answer Key

Question Answer		
1	В	
2	С	
3	С	
4	А	
5	; B	

Question	Answer
6	В
7	В
8	D
9	D
10	В

Questions 1 – 10

Samp	ble solution
1.	Number over $40000 = 3 \times 4!$
	= 72
	∴ 72 numbers are greater than 40000.
2.	2 ways to arrange the two youngest family members
	6! ways to arrange the remaining six family members as well as the group of two around a circular table.
3.	$4 - x^2 > 0$
	$4 > x^2$
	$\therefore -2 < x < 2$
4.	$\cot \theta > 0$ if $\tan \theta > 0$
	$2\sec\theta + 3 = 0$
	$\sec\theta = \frac{-3}{2}$
	$\frac{2}{2}$
	$\cos\theta = \frac{-1}{-3}$
	··· <i>θ</i> "
	$\therefore \cos \theta < 0$ and $\tan \theta > 0$ (i.e. θ is in quadrant 3)
	$\sqrt{5}$
	$\sin\theta = -\frac{1}{3}$
5.	$\sin\theta\cos\theta = \sin\theta$
	$\sin\theta(\cos\theta-1)=0$
	$\therefore \sin \theta = 0 \text{ or } \cos \theta = 1$
	For $0^{\circ} \le \theta \le 360^{\circ}$, $\theta = 0^{\circ}, 180^{\circ}, 360^{\circ}$
6.	$AH = AF = FH$ (equal diagonals of the square faces) ie. $\triangle AFH$ is equilateral.
	By Pythagoras' theorem, $AH = p\sqrt{2}$.
	Using the sine rule for area,
	$A_{\Delta AFH} = \frac{1}{2} \times p\sqrt{2} \times p\sqrt{2} \times \sin 60^{\circ}$
	$=\frac{p^2\sqrt{3}}{2}$
	2

7.	30 _ 30
	$\overline{3\sin^2\alpha + 2\sin^2(90^\circ - \alpha)} - \overline{3\sin^2\alpha + 2\cos^2\alpha}$
	$=\frac{30}{30}$
	$\sin^2 \alpha + 2$
	Least value occurs when denomiator is largest, i.e. $\sin^2 \alpha = 1$.
	Least value of $\frac{30}{30} = \frac{30}{30}$
	$\sin^2 \alpha + 2 1 + 2$
	= 10
8.	Student 1 multiplied both sides by $(x-1)$, which could be negative, the inequality sign may needed to have been flipped
	Student 2 multiplied both sides by $\sqrt{x(x-1)^2}$, which is positive, the inequality is ok.
	Student 3 multiplied both sides by $(\sqrt{x})^2 (x-1)^2$, which is positive, the extra \sqrt{x} does not introduce any extra
	solutions in the natural domain, the inequality is ok.
9.	Let $x = -1$:
	$f(0) = (-1)^4 - 2 \times (-1) + 1$
	=1+2+1
	= 4
10.	The number of ways of choosing 1 item from a set of <i>n</i> items does not depend on order, so ${}^{n}P_{1} = {}^{n}C_{1}$.
	By definition,
	${}^{n}C = \frac{n!}{n!}$
	r r!(n-r)!
	$=\frac{1}{r!}^{n}P_{r}$
	r: $^{n}C \times r! = ^{n}P$
	The number of ways of choosing r items from a set of n items where order is important is always more than the number
	of ways of choosing r items from a set of n items where order is not important, i.e. ${}^{n}P_{r} \ge {}^{n}C_{r}$, with equality when
	<i>r</i> = 1.
	By elimination, " $P_n \neq "C_n$ is not always true. (Note: For the given conditions, this statement is only true for $n = 1$.)

Section II

Question 11

Sample solution		Suggested marking criteria
(a)	Natural domain for $\frac{x}{x-4}$: $x \neq 4$ $\frac{x}{x-4} \leq 5$ $x(x-4) \leq 5(x-4)^{2}$ $0 \leq (x-4) [5(x-4)-x]$ $0 \leq 4(x-4)(x-5)$ $\therefore x < 4 \text{ or } x \geq 5$	 3 - correct solution 2 - correctly identifies the two critical points x = 4 and x = 5 1 - attempts to solve the inequation using a suitable method recognises a restriction in the domain
(b)	(i) $\frac{11!}{2!2!2!} = 4\ 989\ 600$	• 1 – correct answer, or equivalent numerical expression
	(ii) There are $\frac{4!}{2!} = 12$ ways of arranging the vowels. Treating the vowels as a single entity, the number of ways to arrange the remaining 7 letters and the single group of vowels is: $\frac{8!}{2!2!} = 10\ 080$ Total number of arrangements = 10\ 080 × 12 = 120\ 960	• 1 – correct answer, or equivalent numerical expression
	(iii) Treating MA as a single entity, the number of ways to arrange (MA)THE(MA)TICS in a line is: $\frac{9!}{2!2!} = 90\ 720$	• 1 – correct answer, or equivalent numerical expression
(c)	(i) Let $u = x^2$: $u^2 - 4u + 3 = 0$ (u - 3)(u - 1) = 0 u = 1 or $u = 3x^2 = 1 x^2 = 3x = \pm 1 x = \pm \sqrt{3}$	• 1 – correct solution
	(ii) Using the results from (i), and letting $x = \tan \theta$: $\tan \theta = \pm 1$ or $\tan \theta = \pm \sqrt{3}$ $\theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ $\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ $\therefore \theta = 45^{\circ}, 60^{\circ}, 120^{\circ}, 135^{\circ}, 225^{\circ}, 240^{\circ}, 300^{\circ}, 315^{\circ}$	 2 - correct solution 1 - correct attempt at solving an appropriate trigonometric equation
(d)	$y = -\sqrt{x-1}$	 2 - correct region and boundaries 1 - significant progress towards the correct region and boundaries

Question 12

Sam	Sample solution			Suggested marking criteria
(a)	(i)	In $\triangle DBC$,		• 1 – correct solution
		$\tan 60^\circ = \frac{h}{RC}$		
		$BC = \frac{h}{h}$		
		$bc = \frac{1}{\tan 60^{\circ}}$		
		$=\frac{n}{\sqrt{3}}$		
	(ii)	In ΔDAC ,		• 1 – correct solution
		$\tan 30^\circ = \frac{h}{4C}$		
		$AC = \frac{h}{h}$		
		$\tan 30^\circ$ $-h_2\sqrt{3}$		
	(iii)	$In \Lambda ABC$.		• 2 – correct solution
	()	$AB^{2} = BC^{2} + AC^{2} - 2 \times BC \times AC \times \cos 60$	0°	 1 – uses cosine rule, showing
		$49 = \left(\frac{h}{\sqrt{3}}\right)^2 + \left(h\sqrt{3}\right)^2 - \cancel{2} \times \frac{h}{\sqrt{3}} \times h\sqrt{3}$	$\overline{3} \times \frac{1}{2}$	appropriate substitution $-$ finds AC in terms of h
		$49 = \frac{h^2}{3} + 3h^2 - h^2$		
		$49 = \frac{7h^2}{1}$		
		$3^{21} = h^{2}$		
		$h = \sqrt{21} (\text{since } h > 0)$		
	(iv)	By sine area rule,	$-\frac{1}{\sqrt{7}}$	• 3 – correct solution
		$A_{\Delta ABC} = \frac{1}{2} \times \frac{h}{\sqrt{2}} \times h \sqrt{3} \times \sin 60^{\circ}$	$ABC = \frac{1}{2} \times 7 \times CE$	• 2 – finds the area of $\triangle ABC$
		$\frac{2}{\sqrt{3}}$ $\frac{21\sqrt{4}}{4}$	$\frac{\sqrt{3}}{4} = \frac{7}{2} \times CE$	 significant progress towards solution using
		$=\frac{\hbar^2}{2} \times \frac{\sqrt{3}}{2} \qquad \qquad \underline{3}$	$\sqrt{3} = CE$	$\cos \angle CBA = \frac{1}{2\sqrt{7}}$ or
		$=\frac{21\sqrt{3}}{2}$	2	$\sin \angle CAB = \frac{\sqrt{21}}{14}$, or
		4		equivalent merit
				• 1 – attempts to use the sine area rule to find the area of ΔABC
(b)	(i)	$^{14}C_5 = 2002$		• 1 – correct answer, or equivalent numerical expression
	(ii)	(ii) ${}^{6}C_{2} \times {}^{8}C_{3} = 840$		• 1 – correct answer, or equivalent numerical expression
	(iii)	There are ${}^{6}C_{5} = 6$ committees that consist of men only.		• 1 – correct answer, or
	Therefore, there are $2002 - 6 = 1996$ committees with at least 1 woman.		equivalent numerical expression	
	(iv)	There are ${}^{6}C_{5} = 6$ committees that consist of men only.		• 1 – correct answer, or equivalent numerical
		There are ${}^{8}C_{5} = 56$ committees that consist of women only.		expression
		Therefore, there are $56+6=62$ committee members of the same gender.	tees that are entirely made up of	

Sample solution		ition	Suggested marking criteria
(a)	(i)	$f(-x) = (-x)^{2} - -2x - 3$	• 1 – correct solution
		$= x^{2} - 2x - 3$ (since $ -A = A $ for all A)	
		=f(x)	
		Therefore, $f(x)$ is an even function.	
	(ii)	-3 0 3 $(-1,-4)$ $(1,-4)$	 2 - correct solution 1 - correctly sketches one branch of y = f(x)
	(iii)	The vertex of the parabola $y = x^2 - 2x - 3$ is $(1, -4)$.	• 1 – correct solution
		By symmetry of the even function, the range of $f(x) = x^2 - 2x - 3$ is $y \ge -4$.	
(b)	(i)	y = x + 1 $y = 2x - 4 $ (5, 6) (5, 6) (1, 2)	 2 – correct graphs 1 – one correct graph
	(ii)	$1 \le x \le 5$	 2 - correct solution 1 - correctly identifies two critical points
(c)	(i)	By difference of two cubes, $64k^{6} - 1 = (4k^{2} - 1)(16k^{4} + 4k^{2} + 1)$ $= (2k + 1)(2k - 1)(16k^{4} + 4k^{2} + 1)$ By difference of two squares, $64k^{6} - 1 = (8k^{3} + 1)(8k^{3} - 1)$ $= (2k + 1)(4k^{2} - 2k + 1)(2k - 1)(4k^{2} + 2k + 1)$	 2 - correct solution 1 - correct expression for one of the factorisations
	(ii)	$16k^{4} + 4k^{2} + 1 = (4k^{2} - 2k + 1)(4k^{2} + 2k + 1)$	• 1 – correct solution

Question 14

Sample solution		ition	Suggested marking criteria	
(a)	(a) (i) ${}^{13}C_4 = 715$		• 1 – correct answer, or equivalent numerical expression	
	(ii)	Let S represent a "stop" and P represent a "pass". The problem is equivalent to arranging 9 P 's and 4 S 's so that no S is adjacent to one another.	• 1 – correct answer, or equivalent numerical expression	
		With 9 <i>P</i> 's, there are 10 spaces that the 4 <i>S</i> 's could go: $\begin{array}{c} P P P P P P P P P P P P P \end{array}$		
		Number of ways = ${}^{10}C_4$ = 210		
(b)	(i)	LHS = $\frac{\left(\sin^2 \alpha - \cos^2 \alpha\right) (1 - \sin \alpha \cos \alpha)}{\cos \alpha (\sec \alpha - \csc \alpha) (\sin^3 \alpha + \cos^3 \alpha)}$	 3 - correct solution 2 - significant progress towards a valid solution 	
		$= \frac{(\sin\alpha + \cos\alpha)(\sin\alpha - \cos\alpha)(1 - \sin\alpha \cos\alpha)}{\cos\alpha(\sec\alpha - \csc\alpha)(\sin\alpha + \cos\alpha)(\sin^2\alpha - \sin\alpha \cos\alpha + \cos^2\alpha)}$ $= \frac{\sin\alpha - \cos\alpha}{\cos\alpha(\frac{1}{\cos\alpha} - \frac{1}{\sin\alpha})}$ $= \frac{\sin\alpha - \cos\alpha}{\cos\alpha(\frac{\sin\alpha - \cos\alpha}{\sin\alpha\cos\alpha})}$ $= \sin\alpha$ $= \text{RHS}$	• 1 – correctly factorises the difference of two squares – correctly factorises the sum of two cubes – correctly simplifies $\cos \alpha (\sec \alpha - \csc \alpha)$	
(c)	(i)	In any $\triangle ABC$, $A + B + C = 180^{\circ}$ $\therefore \tan(A + B + C) = 0$ $\frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1 - \tan A \tan B - \tan B \tan C - \tan C \tan A} = 0$ $\tan A + \tan B + \tan C - \tan A \tan B \tan C = 0$ $\tan A + \tan B + \tan C = \tan A \tan B \tan C$	 2 - correct solutions 1 - recognising tan(A+B+C) = 0 	
	(ii)	$\frac{\tan X}{5} = \frac{\tan Y}{6} = \frac{\tan Z}{7} = k$ Therefore, $\tan X = 5k$, $\tan Y = 6k$ and $\tan Z = 7k$. $\tan X + \tan Y + \tan Z = \tan X \tan Y \tan Z$ $5k + 6k + 7k = 5k \times 6k \times 7k$	 3 - correct solution 2 - justifies why k is positive 1 - attempts to solve for k using an appropriate method 	
		$18k = 210k^{3}$ $0 = 6k(35k^{2} - 3)$ $k \neq 0 \text{ as this implies } \tan X = \tan Y = \tan Z = 0 \text{, which yields a degenerate}$ triangle. $k \neq 0$ as X, Y and Z cannot be all obtuse, therefore $k = \sqrt{\frac{3}{35}}$		
	(iii)	$\tan X = 5\sqrt{\frac{3}{35}}$ $X = 55^{\circ}40'$	• 1 – correct solution	