YEAR 11 HALF YEARLY EXAMINATION 2017
 MATHEMATICS EXTENSION 1
 MARKING GUIDELINES

Section I

Multiple-choice Answer Key

Question	Answer
1	B
2	C
3	C
4	A
5	B

Question	Answer
6	B
7	B
8	D
9	D
10	B

Questions 1-10

	le solution
1.	$\text { Number over } \begin{aligned} 40000 & =3 \times 4! \\ & =72 \end{aligned}$ $\therefore 72$ numbers are greater than 40000 .
2.	2 ways to arrange the two youngest family members 6 ! ways to arrange the remaining six family members as well as the group of two around a circular table.
3.	$\begin{aligned} 4-x^{2} & >0 \\ 4 & >x^{2} \\ \therefore-2 & <x<2 \end{aligned}$
4.	$\cot \theta>0 \text { if } \tan \theta>0$ $\begin{aligned} 2 \sec \theta+3 & =0 \\ \sec \theta & =\frac{-3}{2} \\ \cos \theta & =\frac{2}{-3} \end{aligned}$ $\therefore \cos \theta<0$ and $\tan \theta>0$ (i.e. θ is in quadrant 3) $\sin \theta=-\frac{\sqrt{5}}{3}$
5.	$\begin{aligned} & \sin \theta \cos \theta=\sin \theta \\ & \sin \theta(\cos \theta-1)=0 \\ & \therefore \sin \theta=0 \text { or } \cos \theta=1 \\ & \text { For } 0^{\circ} \leq \theta \leq 360^{\circ}, \theta=0^{\circ}, 180^{\circ}, 360^{\circ} \end{aligned}$
6.	$A H=A F=F H$ (equal diagonals of the square faces) ie. $\triangle A F H$ is equilateral. By Pythagoras' theorem, $A H=p \sqrt{2}$. Using the sine rule for area, $\begin{aligned} A_{\triangle A F H} & =\frac{1}{2} \times p \sqrt{2} \times p \sqrt{2} \times \sin 60^{\circ} \\ & =\frac{p^{2} \sqrt{3}}{2} \end{aligned}$

7.	$\begin{aligned} \frac{30}{3 \sin ^{2} \alpha+2 \sin ^{2}\left(90^{\circ}-\alpha\right)} & =\frac{30}{3 \sin ^{2} \alpha+2 \cos ^{2} \alpha} \\ & =\frac{30}{\sin ^{2} \alpha+2} \end{aligned}$ Least value occurs when denomiator is largest, i.e. $\sin ^{2} \alpha=1$. Least value of $\frac{30}{\sin ^{2} \alpha+2}=\frac{30}{1+2}$ $=10$
8.	Student 1 multiplied both sides by $(x-1)$, which could be negative, the inequality sign may needed to have been flipped. Student 2 multiplied both sides by $\sqrt{x}(x-1)^{2}$, which is positive, the inequality is ok. Student 3 multiplied both sides by $(\sqrt{x})^{2}(x-1)^{2}$, which is positive, the extra \sqrt{x} does not introduce any extra solutions in the natural domain, the inequality is ok.
9.	Let $x=-1$: $\begin{aligned} f(0) & =(-1)^{4}-2 \times(-1)+1 \\ & =1+2+1 \\ & =4 \end{aligned}$
10.	The number of ways of choosing 1 item from a set of n items does not depend on order, so ${ }^{n} P_{1}={ }^{n} C_{1}$. By definition, $\begin{aligned} { }^{n} C_{r} & =\frac{n!}{r!(n-r)!} \\ & =\frac{1}{r!}{ }^{n} P_{r} \\ { }^{n} C_{r} \times r! & ={ }^{n} P_{r} \end{aligned}$ The number of ways of choosing r items from a set of n items where order is important is always more than the number of ways of choosing r items from a set of n items where order is not important, i.e. ${ }^{n} P_{r} \geq{ }^{n} C_{r}$, with equality when $r=1$. By elimination, ${ }^{n} P_{n} \neq{ }^{n} C_{n}$ is not always true. (Note: For the given conditions, this statement is only true for $n=1$.)

Section II

Question 11

Sample solution		Suggested marking criteria
(a)	Natural domain for $\frac{x}{x-4}: x \neq 4$ $\begin{aligned} \frac{x}{x-4} & \leq 5 \\ x(x-4) & \leq 5(x-4)^{2} \\ 0 & \leq(x-4)[5(x-4)-x] \\ 0 & \leq 4(x-4)(x-5) \\ \therefore x<4 & \text { or } x \geq 5 \end{aligned}$	- 3 - correct solution - 2 - correctly identifies the two critical points $x=4$ and $x=5$ - 1 - attempts to solve the inequation using a suitable method - recognises a restriction in the domain
(b)	(i) $\frac{11!}{2!2!2!}=4989600$	- 1 - correct answer, or equivalent numerical expression
	(ii) There are $\frac{4!}{2!}=12$ ways of arranging the vowels. Treating the vowels as a single entity, the number of ways to arrange the remaining 7 letters and the single group of vowels is: $\frac{8!}{2!2!}=10080$ $\begin{aligned} \text { Total number of arrangements } & =10080 \times 12 \\ & =120960 \end{aligned}$	- 1 - correct answer, or equivalent numerical expression
	(iii) Treating MA as a single entity, the number of ways to arrange (MA)THE(MA)TICS in a line is: $\frac{9!}{2!2!}=90720$	- 1 - correct answer, or equivalent numerical expression
(c)	(i) Let $u=x^{2}$:	- 1 - correct solution
	(ii) Using the results from (i), and letting $x=\tan \theta$:	- 2 - correct solution - 1 - correct attempt at solving an appropriate trigonometric equation
(d)		- 2 - correct region and boundaries - 1 - significant progress towards the correct region and boundaries

Question 12

Sample solution			Suggested marking criteria
(a)		In $\triangle D B C$, $\begin{aligned} \tan 60^{\circ} & =\frac{h}{B C} \\ B C & =\frac{h}{\tan 60^{\circ}} \\ & =\frac{h}{\sqrt{3}} \end{aligned}$	- 1 - correct solution
		In $\triangle D A C$, $\begin{aligned} \tan 30^{\circ} & =\frac{h}{A C} \\ A C & =\frac{h}{\tan 30^{\circ}} \\ & =h \sqrt{3} \end{aligned}$	- 1 - correct solution
	(iii) In $\triangle A B C$,$\begin{aligned} A B^{2} & =B C^{2}+A C^{2}-2 \times B C \times A C \times \cos 60^{\circ} \\ 49 & =\left(\frac{h}{\sqrt{3}}\right)^{2}+(h \sqrt{3})^{2}-\not 2 \times \frac{h}{\not \sqrt{3}} \times h \sqrt{3} \times \frac{1}{\not 2} \\ 49 & =\frac{h^{2}}{3}+3 h^{2}-h^{2} \\ 49 & =\frac{7 h^{2}}{3} \\ 21 & =h^{2} \\ h & =\sqrt{21} \quad(\text { since } h>0) \end{aligned}$		- 2 - correct solution - 1 - uses cosine rule, showing appropriate substitution - finds $A C$ in terms of h
		$\begin{array}{l\|l} \hline \text { By sine area rule, } & \begin{array}{ll} A_{\triangle A B C} & =\frac{1}{2} \times \frac{h}{\sqrt{3}} \times h \sqrt{3} \times \sin 60^{\circ} \\ & =\frac{h^{2}}{2} \times \frac{\sqrt{3}}{2} \\ & =\frac{21 \sqrt{3}}{4}=\frac{7}{2} \times C E \\ & \end{array} \\ \begin{aligned} \frac{3 \sqrt{3}}{2} & =C E \end{aligned} \\ \end{array}$	- 3 - correct solution - 2 - finds the area of $\triangle A B C$ - significant progress towards solution using $\cos \angle C B A=\frac{1}{2 \sqrt{7}}$ or $\sin \angle C A B=\frac{\sqrt{21}}{14}$, or equivalent merit - 1 - attempts to use the sine area rule to find the area of $\triangle A B C$
(b)	(i)	${ }^{14} C_{5}=2002$	- 1 - correct answer, or equivalent numerical expression
	(ii)	${ }^{6} C_{2} \times{ }^{8} C_{3}=840$	- 1 - correct answer, or equivalent numerical expression
	(iii)	There are ${ }^{6} C_{5}=6$ committees that consist of men only. Therefore, there are 2002-6=1996 committees with at least 1 woman.	- 1 - correct answer, or equivalent numerical expression
		There are ${ }^{6} C_{5}=6$ committees that consist of men only. There are ${ }^{8} C_{5}=56$ committees that consist of women only. Therefore, there are $56+6=62$ committees that are entirely made up of members of the same gender.	- 1 - correct answer, or equivalent numerical expression

Question 13

Sample solution		Suggested marking criteria
(a)	(i) $\begin{aligned} f(-x) & =(-x)^{2}-\|-2 x\|-3 \\ & =x^{2}-\|2 x\|-3(\text { since }\|-A\|=\|A\| \text { for all } A) \\ & =f(x) \end{aligned}$ Therefore, $f(x)$ is an even function.	- 1 - correct solution
	(ii)	- 2 - correct solution - 1 - correctly sketches one branch of $y=f(x)$
	(iii) The vertex of the parabola $y=x^{2}-2 x-3$ is $(1,-4)$. By symmetry of the even function, the range of $f(x)=x^{2}-\|2 x\|-3$ is $y \geq-4$.	- 1 - correct solution
(b)	(i)	- 2 - correct graphs - 1 - one correct graph
	(ii) $1 \leq x \leq 5$	- 2 - correct solution - 1 - correctly identifies two critical points
(c)	(i) By difference of two cubes, $\begin{aligned} 64 k^{6}-1 & =\left(4 k^{2}-1\right)\left(16 k^{4}+4 k^{2}+1\right) \\ & =(2 k+1)(2 k-1)\left(16 k^{4}+4 k^{2}+1\right) \end{aligned}$ By difference of two squares, $\begin{aligned} 64 k^{6}-1 & =\left(8 k^{3}+1\right)\left(8 k^{3}-1\right) \\ & =(2 k+1)\left(4 k^{2}-2 k+1\right)(2 k-1)\left(4 k^{2}+2 k+1\right) \end{aligned}$	- 2 - correct solution - 1 - correct expression for one of the factorisations
	(ii) $16 k^{4}+4 k^{2}+1=\left(4 k^{2}-2 k+1\right)\left(4 k^{2}+2 k+1\right)$	- 1 - correct solution

Question 14

Sample solution		Suggested marking criteria
(a)	(i) ${ }^{13} C_{4}=715$	- 1 - correct answer, or equivalent numerical expression
	(ii) Let S represent a "stop" and P represent a "pass". The problem is equivalent to arranging $9 P$'s and $4 S$'s so that no S is adjacent to one another. With $9 P$'s, there are 10 spaces that the $4 S$'s could go: $\begin{aligned} & { }_{-} P_{-} P_{-} P_{-} P_{-} P_{-} P_{-} P_{-} P_{-} P_{-} \\ \text {Number of ways } & ={ }^{10} C_{4} \\ & =210 \end{aligned}$	- 1 - correct answer, or equivalent numerical expression
(b)	(i) $\begin{aligned} \text { LHS } & =\frac{\left(\sin ^{2} \alpha-\cos ^{2} \alpha\right)(1-\sin \alpha \cos \alpha)}{\cos \alpha(\sec \alpha-\operatorname{cosec} \alpha)\left(\sin ^{3} \alpha+\cos ^{3} \alpha\right)} \\ & =\frac{(\sin \alpha+\cos \alpha)(\sin \alpha-\cos \alpha)(1-\sin \alpha \cos \alpha)}{\cos \alpha(\sec \alpha-\operatorname{cosec} \alpha)(\sin \alpha+\cos \alpha)\left(\sin ^{2} \alpha-\sin \alpha \cos \alpha+\cos ^{2} \alpha\right)} \\ & =\frac{\sin \alpha-\cos \alpha}{\cos \alpha\left(\frac{1}{\cos \alpha}-\frac{1}{\sin \alpha}\right)} \\ & =\frac{\sin \alpha-\cos \alpha}{\cos \alpha\left(\frac{\sin \alpha-\cos \alpha}{\sin \alpha \cos \alpha}\right)} \\ & =\sin \alpha \\ & =\text { RHS } \end{aligned}$	- 3 - correct solution - 2 - significant progress towards a valid solution - 1 - correctly factorises the difference of two squares - correctly factorises the sum of two cubes - correctly simplifies $\cos \alpha(\sec \alpha-\operatorname{cosec} \alpha)$
(c)	(i) In any $\triangle A B C, A+B+C=180^{\circ}$ $\therefore \tan (A+B+C)=0$ $\begin{aligned} \frac{\tan A+\tan B+\tan C-\tan A \tan B \tan C}{1-\tan A \tan B-\tan B \tan C-\tan C \tan A} & =0 \\ \tan A+\tan B+\tan C-\tan A \tan B \tan C & =0 \\ \tan A+\tan B+\tan C & =\tan A \tan B \tan C \end{aligned}$	- 2 - correct solutions - 1 - recognising $\tan (A+B+C)=0$
	(ii) $\frac{\tan X}{5}=\frac{\tan Y}{6}=\frac{\tan Z}{7}=k$ Therefore, $\tan X=5 k, \tan Y=6 k$ and $\tan Z=7 k$. $\begin{aligned} \tan X+\tan Y+\tan Z & =\tan X \tan Y \tan Z \\ 5 k+6 k+7 k & =5 k \times 6 k \times 7 k \\ 18 k & =210 k^{3} \\ 0 & =6 k\left(35 k^{2}-3\right) \end{aligned}$ $k \neq 0$ as this implies $\tan X=\tan Y=\tan Z=0$, which yields a degenerate triangle. $k \nless 0$ as X, Y and Z cannot be all obtuse, therefore $k=\sqrt{\frac{3}{35}}$	- 3 - correct solution - 2 - justifies why k is positive - 1 - attempts to solve for k using an appropriate method
	$\text { (iii) } \begin{aligned} \tan X & =5 \sqrt{\frac{3}{35}} \\ X & =55^{\circ} 40^{\prime} \end{aligned}$	- 1 - correct solution

