BAULKHAM HILLS HIGH SCHOOL

YEAR 11 MATHEMATICS EXTENSION HALF YEARLY ASSESSMENTS 2018 SOLUTIONS

Solution SECTION I \quad Marks ${ }^{\text {a }}$ Comments		
$\text { 1. } \begin{aligned} \text { B }-8 x^{3}+27 & =(2 x)^{3}+3^{3} \\ & =(2 x+3)\left((2 x)^{2}-(2 x)(3)\right. \\ & =(2 x+3)\left(4 x^{2}-6 x+9\right) \end{aligned}$	1	
2. D-the only graph that satisfies the "vertical line test"	1	
$\text { 3. } \begin{aligned} \mathbf{A}-\frac{1+\sqrt{3}}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} & =\frac{2+3 \sqrt{3}+3}{4-3} \\ & =5+3 \sqrt{3} \end{aligned}$	1	
4. \mathbf{D} - from the diagram; Angle of elevation is α Angle of depression is θ	1	
5. $\mathbf{C}-\cos \theta<0$ and $\sin \theta<0 \Rightarrow$ quadrant $3, \therefore \tan \theta>0$ $\tan \theta=\frac{4}{3}$	1	
$\text { 6. } \begin{aligned} \mathrm{A}-\frac{x+5}{(x-3)(x+1)}-\frac{x-1}{x^{2}-x-2} & =\frac{x+5}{(x-3)(x+1)}-\frac{x-1}{(x-2)(x+1)} \\ & =\frac{(x+5)(x-2)-(x-1)(x-3)}{(x-3)(x-2)(x+1)} \\ & =\frac{x^{2}+3 x-10-x^{2}+4 x-3}{(x-3)(x-2)(x+1)} \\ & =\frac{7 x-13}{(x-3)(x-2)(x+1)} \end{aligned}$ 6.	1	
$\text { 7. } \begin{aligned} \mathrm{C}-\frac{\sin \left(360^{\circ}-A\right)}{\sin \left(90^{\circ}-A\right)} & =\frac{-\sin A}{\cos A} \\ & =-\tan A \end{aligned}$	1	
8. B - $\begin{aligned} f(a) & =g(2 a) \\ 3 a^{2}-4 & =(2 a)^{2}-2(2 a) \\ 3 a^{2}-4 & =4 a^{2}-4 a \\ a^{2}-4 a+4 & =0 \\ (a-2)^{2} & =0 \\ a & =2 \Rightarrow \text { only one solution } \end{aligned}$	1	
9. $\mathbf{C}-x^{2}+y^{2}-12 x-10 y+k=0$ $(x-6)^{2}+(y-5)^{2}=61-k \Rightarrow \text { centre is }(6,5)$ For exactly three intercepts the radius $=6$ $\begin{aligned} 61-k & =36 \\ k & =25 \end{aligned}$	1	
$\text { 10. B } \begin{aligned} \frac{6^{r+s} \times 12^{r-s}}{8^{r} \times 9^{r+2 s}} & =\frac{2^{r+s} \times 3^{r+s} \times 2^{2 r-2 s} \times 3^{r-s}}{2^{3 r} \times 3^{2 r+4 s}} \\ & =\frac{2^{3 r-s} \times 3^{2 r}}{2^{3 r} \times 3^{2 r+4 s}} \\ & =2^{-s} \times 3^{-4 s} \end{aligned}$ Thus $s \leq 0$ in order for expression to be an integer	1	

QUESTION 12...continued.		
Solution	Marks	Comments
$12 \text { (a) (ii) } \begin{aligned} & \frac{2}{x^{2}-1}-\frac{1}{x^{2}-x}+\frac{x-1}{x^{2}+x} \\ & =\frac{2}{(x-1)(x+1)}-\frac{1}{x(x-1)}+\frac{x-1}{x(x+1)} \\ = & \frac{2 x-(x+1)+(x-1)^{2}}{x(x+1)(x-1)} \\ = & \frac{2 x-x-1+x^{2}-2 x+1}{x(x+1)(x-1)} \\ = & \frac{x^{2}-x}{x(x+1)(x-1)} \\ = & \frac{x(x-1)}{x(x+1)(x-1)} \\ = & \frac{1}{x+1} \end{aligned}$	3	3 marks - Correct solution 2 marks - Rewrites as a single fraction 1 mark - Finds the LCD
$12 \text { (b) (i) } \quad \begin{aligned} \frac{3 x-2}{4}-\frac{2 x-1}{8} & =5 \\ 2(3 x-2)-(2 x-1) & =40 \\ 6 x-4-2 x+1 & =40 \\ 4 x & =43 \\ x & =\frac{43}{4} \end{aligned}$	2	2 marks - Correct solution 1 mark - Removes the fractions by multiplying by the LCD, or equivalent
12 (b) (ii) $$	3	3 marks - Correct solution 2 marks - Finds two "possible" answers 1 mark - Finds an answer without considering cases.
$12 \text { (b) (iii) } \begin{aligned} 2 x^{2}-6 x & \leq 0 \\ 2 x(x-3) & \leq 0 \\ & \leq x \leq 3 \end{aligned}$	2	2 marks - Correct solution 1 mark - Establishes the two critical points of the solution.
12(b) (iv) $\frac{x+1}{x^{2}-4} \geq 0$ $\stackrel{\substack{x^{2}-4 \neq 0 \\ x \neq \pm 2}}{\stackrel{y}{x+1=0}}$	3	3 marks - Correct graphical solution on number line or algebraic solution 2 marks - Bald answer - Identifies the three correct critical points via a correct method - Correct conclusion to their critical points obtained using a correct method 1 mark - Uses a correct method - Acknowledges a problem with denominator.
QUESTION 13		
13 (a) Using the graph, the question becomes; "whenis the linebelow the absolute value graph?" As we are only concerned with the x values, the solution is $x \leq-1$ or $x \geq 3$	1	1 mark - Correct solution
13 (b) $\begin{aligned} \frac{10}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}} & =\frac{10(\sqrt{5}+\sqrt{3})}{5-3} \\ & =\frac{10(\sqrt{5}+\sqrt{3})}{2} \\ & =5(\sqrt{5}+\sqrt{3}) \end{aligned}$	2	2 marks - Correct solution 1 mark - Attempts to multiply by the conjugate of the denominator

QUESTION 13...continued.		
Solution	Marks	Comments
$13 \text { (c) } \quad \begin{array}{rlrl} \text { let } x & =0.01232323 \ldots . . & \text { OR } & 0.01 \ddot{2} \dot{3}= \\ 100 x & =1.23232323 \ldots & & 12300 \\ 99 x & =1.22 & & =\frac{122}{9900} \\ x & =\frac{1.22}{99} & & \\ & =\frac{122}{9900} & & \\ & =\frac{61}{4950} & & \\ & \therefore 0.01 \ddot{2} \dot{3}=\frac{61}{4950} & \\ \hline \end{array}$	2	2 marks - Correct solution 1 mark - Evidence of a valid manual calculation
13 (d) $\begin{aligned} F & =\frac{m v^{2}}{g r} \\ m v^{2} & =F g r \\ v^{2} & =\frac{F g r}{m} \\ v & = \pm \sqrt{\frac{F g r}{m}} \end{aligned}$	2	2 marks - Correct solution 1 mark - makes v^{2} the subject of the formula
13 (e) $\begin{array}{rlr} x^{2}-8 x+9 & =0 & \text { OR } \\ x^{2}-8 x & =-9 & x^{2}-8 x+9=0 \\ x^{2}-8 x+4^{2} & =7 & (x-4)^{2}-7=0 \\ (x-4)^{2} & =7 & (x-4-\sqrt{7})(x-4+\sqrt{7})=0 \\ x-4 & = \pm \sqrt{7} & x=4 \pm \sqrt{7} \\ x=4 \pm \sqrt{7} & \end{array}$	2	2 marks - Correct solution 1 mark - Completes the square to obtain $(x-4)^{2}$ - Solves the equation for a different completed square.
13 (f) (i) when $x=2$ and $y=1$ $\begin{aligned} (x+2 y)(2 x-y)+(x-y)(3 x+4 y) & =(2+2)(4-1)+(2-1)(6+4) \\ & =12+10 \\ & =22 \end{aligned}$	1	1 mark - Correct answer
13 (f) (ii) when $y=1$ $\begin{array}{r} (x+2)(2 x-1)+(x-1)(3 x+4)=22 \\ 2 x^{2}+3 x-2+3 x^{2}+x-4=22 \\ 5 x^{2}+4 x-28=0 \\ (x-2)(5 x+14)=0 \\ x=2 \quad \text { or } \quad x=-\frac{14}{5} \end{array}$ \therefore the only other posible value of x is $-\frac{14}{5}$	2	2 marks - Correct solution 1 mark - Establishes quadratic in terms of x
$13 \text { (g) (i) } \begin{aligned} & (x-y+2)(x+y-1) \\ = & x^{2}+x y-x-x y-y^{2}+y+2 x+2 y-2 \\ = & x^{2}-y^{2}+x+3 y-2 \\ = & f(x) \end{aligned}$	1	1 mark - Correct solution
$\begin{aligned} 13 \text { (g) (ii) } \begin{aligned} x^{2}-y^{2}+x+3 y & >2 \\ x^{2}-y^{2}+x+3 y-2 & >0 \\ (x-y+2)(x+y-1) & >0 \\ \therefore \text { either } x-y+2 & >0 \text { and } x+y-1 \end{aligned}>0 \text { OR } x-y+2<0 \text { and } x+y-1<0 \end{aligned}$	2	2 marks - Correct solution 1 mark - Some correct regions indicated, with no more than one incorrect region.

QUESTION 14		
Solution	Marks	Comments
14 (a) some possibilities would include; - A divides BP externally in the ratio 1:4 - \quad B divides PA in the ratio 3:1 - \quad divides BA externally in the ratio 3:4	1	1 mark - Two different statements
14 (b) (i) $f(x)$ is even if $f(-x)=f(x)$	1	1 mark - Correct condition
14 (b) (ii) some examples would include; - $y=x^{2}$ - $y=\|x\|$ - $y=\cos x$	1	1 mark - Correct example
$14 \text { (c) } \quad \begin{aligned} \quad f(2)+f(5)-f(-2) & =3(2)+\left(5^{2}+1\right)-3(-2) \\ & =6+26+6 \\ & =38 \end{aligned}$	2	2 marks - Correct solution 1 mark - finds at least two function values
14 (d) (i) $\begin{gathered} x^{2}-16 \geq 0 \\ x \leq-4 \text { or } x \geq 4 \end{gathered}$	1	1 mark - Correct answer
14(d) (ii) $y \geq 0$	1	1 mark - Correct answer
14 (e) (i) $\quad P(0,1)$	1	1 mark - Correct answer
14 (e) (ii) $\begin{aligned} x^{2}+y^{2} & =2^{2}+4^{2} \\ & =20 \end{aligned}$ \therefore circle has equation $x^{2}+y^{2}=20$	2	2 marks - Correct solution 1 mark - Recognises that a circle's equation is of the form $x^{2}+y^{2}=k$
$\begin{aligned} \hline 14 \text { (e) (iii) } \quad \begin{aligned} &(2,4): 4=a^{2} \\ & a=2 \\ & \therefore \text { exponential has the equation } y=2^{x} \end{aligned} \\ \end{aligned}$	1	1 mark - Correct answer
$14 \text { (e) (iv) } \quad \begin{aligned} x & \geq 0 \\ x^{2}+y^{2} & \leq 20 \\ y & \geq 2^{x} \end{aligned}$	2	2 marks - Correct solution 1 mark - At least two correct inequations
14 (f) $\begin{aligned} f(-x) & =\|-x-2\|-\|-x+2\| \\ & =\|-1\|\|x+2\|-\|-1\|\|x-2\| \\ & =\|x+2\|-\|x-2\| \\ & =-f(x) \end{aligned}$ \therefore function is odd	2	2 marks - Correct solution 1 mark - Recognises the condition for an odd function
QUESTION 15		
$15 \text { (a) (i) } \quad \begin{aligned} \cos 75^{\circ} & =\sin \left(90^{\circ}-75^{\circ}\right) \\ & =\sin 15^{\circ} \\ & =\frac{\sqrt{3}-1}{2 \sqrt{2}} \end{aligned}$	1	1 mark - Correct solution
$15 \text { (a) (ii) } \begin{aligned} \operatorname{cosec} 15^{\circ} & =\frac{1}{\sin 15^{\circ}} \\ & =\frac{2 \sqrt{2}}{\sqrt{3}-1} \end{aligned}$	1	1 mark - Correct solution
$15 \text { (a) (iii) } \quad \begin{aligned} \sin 195^{\circ} & =\sin \left(180^{\circ}+15^{\circ}\right) \\ & =-\sin 15^{\circ} \\ & =\frac{1-\sqrt{3}}{2 \sqrt{2}} \end{aligned}$	1	1 mark - Correct solution
15 (b) $\begin{aligned} 2 x+y=4 \\ 5 x+2 y=9\end{aligned} \Rightarrow \begin{array}{r}4 x+2 y=8 \\ \\ \frac{5 x+2 y=9}{x}=1 \quad \therefore y=2\end{array}$	2	2 marks - Correct solution 1 mark - Finds the correct value for one pronumeral

QUESTION 15...continued.		
Solution	Marks	Comments
$15 \text { (c) } \quad \begin{aligned} \sin ^{4} x-\cos ^{4} x & =\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{2} x+\cos ^{2} x\right) \\ & =\sin ^{2} x-\cos ^{2} x \\ & =\left(1-\cos ^{2} x\right)-\cos ^{2} x \\ & =1-2 \cos ^{2} x \end{aligned}$	2	2 marks - Correct solution 1 mark - Uses a valid trig identity in a relevant manner.
15 (d) (i) The student divided out a possible solution when canceling $\sin x$ When solving equations you can only divide by an unknown if there is no possibility that the unknown could equal zero.	1	1 mark - Correct explanation
15 (d) (ii) The missing answer comes from the possibility that; $\begin{aligned} \sin x & =0 \\ x & =0^{\circ}, 180^{\circ}, 360^{\circ} \end{aligned}$ So the missing answer is $x=180^{\circ}$.	1	1 mark - Correct solution
$15 \text { (e) (i) } \begin{gathered} \sin \theta \tan \theta+2 \sin \theta=3 \cos \theta \\ \frac{\sin ^{2} \theta}{\cos \theta}+2 \sin \theta=3 \cos \theta \\ \sin ^{2} \theta+2 \sin \theta \cos \theta=3 \cos ^{2} \theta \\ 3 \cos ^{2} \theta-2 \sin \theta \cos \theta-\sin ^{2} \theta=0 \\ (3 \cos \theta+\sin \theta)(\cos \theta-\sin \theta)=0 \\ \tan \theta=-3 \quad \text { OR } \quad \tan \theta=1 \\ \theta=108^{\circ}, 288^{\circ} \quad \theta=45^{\circ}, 225^{\circ} \\ \therefore \theta=45^{\circ}, 108^{\circ}, 225^{\circ}, 288^{\circ} \end{gathered} .$	3	3 marks - Correct solution 2 marks - Finds the two possibilities for $\tan \theta$ 1 mark - Correctly manipulates terms into a quadratic equation
$15 \text { (e) (ii) } \begin{aligned} \sin \left(20^{\circ}-2 \theta\right) & =\frac{1}{7} \\ \sin \alpha & =\frac{1}{7} \\ \alpha & =8^{\circ} \\ \left(20^{\circ}-2 \theta\right) & =8^{\circ}, 172^{\circ}, 368^{\circ}, 532^{\circ} \\ -2 \theta & =-12^{\circ}, 152^{\circ}, 348^{\circ}, 512^{\circ} \\ \theta & =6^{\circ},-76^{\circ},-174^{\circ},-256^{\circ} \end{aligned}$ However solutions need to be $0^{\circ} \leq \theta \leq 360^{\circ}$, so add $\pm 360^{\circ}$ to any answers not I required range $\therefore \theta=6^{\circ}, 104^{\circ}, 186^{\circ}, 284^{\circ}$	3	3 marks - Correct solution 2 marks - Finds four consecutive answers for $\left(20^{\circ}-2 \theta\right)$ - Finds two answers for θ 1 mark - Finds four consecutive answers for $\left(20^{\circ}-2 \theta\right)$ - Finds two answers for $\pm 2 \theta$
QUESTION 16		
$\text { 16(a) (i) } \quad \begin{aligned} \sin \angle \mathrm{TPS} & =\frac{2.5}{4} \\ \angle \mathrm{TPS} & =36.6821875 \ldots \\ & =36^{\circ} \text { to nearest degree } \end{aligned}$	1	1 mark - Correct answer Note: no rounding penalty
$16 \text { (a) (ii) } \quad \begin{aligned} \left(\frac{1}{2} \mathrm{PS}\right)^{2} & =4^{2}-2.5^{2} \\ \frac{1}{2} \mathrm{PS} & =3.1224998999 \ldots \\ \mathrm{PS} & =6.244997998 \ldots \\ & =6.24 \text { metres to the nearest centimetre } \end{aligned}$	1	1 mark - Correct answer Note: no rounding penalty
$16 \text { (a) (iii) } \quad \begin{aligned} \frac{2.5}{\mathrm{TQ}} & =\sin 65^{\circ} \\ \mathrm{TQ} & =\frac{2.5}{\sin 65^{\circ}} \\ & =2.758444797 \ldots \\ & =276 \text { metres to the nearest centimetre } \end{aligned}$	1	1 mark - Correct answer Note: no rounding penalty
$16 \text { (b) (i) } \quad \begin{aligned} \text { Area } & =\frac{1}{2} \times 40 \times 80 \times \sin 130^{\circ} \\ & =1225.671109 \ldots \\ & =1226 \mathrm{~m}^{2} \end{aligned}$	1	1 mark - Correct answer Note: no rounding penalty
16 (b) (ii) The largest side is always opposite the largest angle, and since the angle is obtuse, it must be the largest angle.	1	1 mark - Correct explanation
$16 \text { (b) (iii) } \begin{aligned} x^{2} & =40^{2}+80^{2}-2 \times 40 \times 80 \times \cos 130^{\circ} \\ x & =110.0628943 \ldots \\ x & =110 \text { metres to the nearest metre } \end{aligned}$	1	1 mark - Correct answer Note: no rounding penalty

QUESTION 16...continued.		
Solution	Marks	Comments
16 (c) (i)	1	1 mark - Correct diagram with all information labelled
$16 \text { (c) (ii) } \begin{aligned} \angle \mathrm{GBW} & =302^{\circ}-270^{\circ}=32^{\circ} \\ \angle \mathrm{GAB} & =296^{\circ}-270^{\circ}=26^{\circ} \\ \angle \mathrm{GBW} & =\angle \mathrm{AGB}+\angle \mathrm{GAB} \quad \text { (exterior } \angle, \Delta \mathrm{BAG}) \\ 32^{\circ} & =\angle \mathrm{AGB}+26^{\circ} \\ \angle \mathrm{AGB} & =6^{\circ} \end{aligned}$	1	1 mark - Correct explanation Note: formal geometric explanation not required
$16 \text { (c) (iii) } \begin{aligned} \frac{\mathrm{BG}}{\sin \angle \mathrm{GAB}} & =\frac{\mathrm{AB}}{\sin \angle \mathrm{AGB}} \\ \frac{\mathrm{BG}}{\sin 26^{\circ}} & =\frac{1500}{\sin 6^{\circ}} \\ \mathrm{BG} & =\frac{1500 \sin 26^{\circ}}{\sin 6^{\circ}} \end{aligned}$	1	1 mark - Evidence of using sine rule in finding the correct expression, or similar merit.
16 (c) (iv) $\mathrm{RG}^{2}=\mathrm{BG}^{2}+\mathrm{BR}^{2}-2 \times \mathrm{BG} \times \mathrm{BR} \times \cos \angle \mathrm{RBG}$ $\mathrm{BR}^{2}-(2 \times \mathrm{BG} \times \cos \angle \mathrm{RBG}) \mathrm{BR}+\left(\mathrm{BG}^{2}-\mathrm{RG}^{2}\right)=0$ $\mathrm{BR}=\frac{2 \times \mathrm{BG} \times \cos 32^{\circ} \pm \sqrt{\left(2 \times \mathrm{BG} \times \cos 32^{\circ}\right)^{2}-4\left(\mathrm{BG}^{2}-\mathrm{RG}^{2}\right)}}{2}$ $=1608.235614 \ldots$ or 9061.388854 \therefore the soldier can travel 1608 metres	3	3 marks - Correct solution 2 marks - Establishes a quadratic equation in terms of BR or similar merit 1 mark - Attempts to find RG using the cosine rule or similar merit. Notes: - no rounding penalty - OK for approximate $B G$ value (6290.695373 ...) to be used in working and calculations
$16 \text { (d) } \begin{array}{rlr} \text { In } \Delta \mathrm{OPQ} ; \\ \cos \theta= & \frac{\mathrm{OP}^{2}+\mathrm{OQ}^{2}-\mathrm{PQ}^{2}}{2 \times \mathrm{OP} \times \mathrm{OQ}} & \begin{aligned} &(R-r) \cos \theta=R-3 r \\ & r(3-\cos \theta)=R(1-\cos \theta) \\ & \frac{r}{R}=\frac{1-\cos \theta}{3-\cos \theta} \end{aligned} \\ = & \frac{\left.\left(\frac{R}{2}\right)^{2}+(R-r)^{2}-\left(\frac{R}{2}+r\right)^{2}\right)(R-r)}{R(R-r)} \\ = & \frac{R^{2}}{4}+R^{2}-2 r R+r^{2}-\frac{R^{2}}{4}-r R-r^{2} \\ = & \frac{R^{2}-3 r R}{R(R-r)} \\ = & \frac{R-3 r}{R-r} \end{array}$	3	3 marks - Correct solution 2 marks - Establishes $\cos \theta=\frac{R-3 r}{R-r}$, or equivalent 1 mark - Finds a relationship between θ, R and r.

QUESTION 17		
Solution	Marks	Comments
17 (a) $A(-2,4) \underbrace{B(3,-11)}_{2 \cdot 3}=(0,-2)$	2	2 marks - Correct solution 1 mark - Finds correct x or y value
17 (b) (i) $\begin{aligned} P X^{2} & =P R^{2}-R X^{2} & \tan \alpha & =\frac{3 \sqrt{3}}{8} \\ & =6^{2}-3^{2} & \alpha & =33.0044916 \ldots \\ & =27 & \alpha & =33^{\circ} \end{aligned}$	2	2 marks - Correct solution 1 mark - Calculates $P X$ - Correctly identifies the angle to be found Note: no rounding penalty
$\begin{aligned} 17 \text { (b) } & \text { (ii) } \\ P C^{2} & =P R^{2}+P R^{2} \\ & =6^{2}+8^{2} \\ & =100 \\ P C & =10 \\ \sin \beta & =\frac{3 \sqrt{3}}{10} \\ \beta & =31.30644625 \ldots \\ \beta & =31^{\circ} \end{aligned}$	2	```2 marks - Correct solution 1 mark - Calculates \(P C\) or \(C X\) - Correctly identifies the angle to be found Note: no rounding penalty```
17 (c) $\begin{aligned} y & =\frac{x^{2}}{x^{2}+5 x+6} \\ & =\frac{x^{2}+5 x+6}{x^{2}+5 x+6}-\frac{5 x+6}{x^{2}+5 x+6} \\ & =1-\frac{5 x+6}{(x+3)(x+2)} \end{aligned}$ Thus; vertical asymptotes are $x=-3$ and $x=-2$ horizontal asymptote is $y=1$	2	2 marks - Correct solution 1 mark - Finds both vertical asymptotes - Finds the horizontal asymptote
17 (d) $\begin{aligned} 3^{2018}-2^{2018} & =\left(3^{2}\right)^{1009}-\left(2^{2}\right)^{1009} \\ & =\left(3^{2}-2^{2}\right)\left(3^{2016}+3^{2014} \times 2^{2}+3^{2012} \times 2^{4}+\ldots+2^{2016}\right) \end{aligned}$ As neither factor is equal to 1 , then $3^{2018}-2^{2018}$ is not prime	1	1 mark - Correct explanation
17 (e) (i) $\quad M(1,2) \quad x=\frac{1-k}{k+1} \quad y=\frac{2-4 k}{k+1}$	1	1 mark - Correct answer
$17 \text { (e) (ii) } \begin{aligned} 3\left(\frac{1-k}{k+1}\right)-4\left(\frac{2-4 k}{k+1}\right)-5 & =0 \\ 3(1-k)-4(2-4 k)-5(k+1) & =0 \\ 3-3 k-8+16 k-5 k-5 & =0 \\ 8 k-10 & =0 \\ k & =\frac{10}{8} \\ k & =\frac{5}{4} \end{aligned}$	2	2 marks - Correct solution 1 mark - Substitutes the found coordinates of K into the equation if the line.

QUESTION 17...continued.		
Solution	Marks	Comments
	3	3 marks - Correct solution 2 marks - Finds sufficient sides and angles in $\triangle A B C$ in order to solve th eproblem 1 mark - Finds an expression for AC in terms of h. - Finds the missing two angles in $\triangle A B C$ Note: full marks awarded for the "exact value" for h
QUESTION 18		
$18 \text { (a) (i) } \quad \begin{aligned} \text { Ways } & =8! \\ & =40320 \end{aligned}$	1	1 mark - Correct answer
$\text { 18(a) (ii) } \quad \begin{aligned} \text { Ways } & =2!\times(3 \times 2) \times 6! \\ & =8640 \end{aligned}$	2	2 marks - Correct solution 1 mark - Handles restriction in a logical manner
	1	1 mark - Correct answer
$\text { 18(b) (ii) } \quad \begin{aligned} \text { Committees } & ={ }^{22} \mathbf{C}_{5}-{ }^{13} \mathbf{C}_{5}-{ }^{9} \mathbf{C}_{5} \\ & =24921 \end{aligned}$	2	2 marks - Correct solution 1 mark - Handles restriction in a logical manner
$18 \text { (b) (iii) } \quad \begin{aligned} \text { Ways } & =4! \\ & =24 \end{aligned}$	1	1 mark - Correct answer
$18 \text { (c) (i) } \quad \begin{aligned} \text { Arrangements } & =\frac{10!}{3!2!} \\ & =302400 \end{aligned}$	1	1 mark - Correct answer
$18 \text { (c) (ii) } \quad \begin{aligned} \text { Arrangements } & =\frac{7!}{21} \times{ }^{8} \mathbf{C}_{3} \\ & =141120 \end{aligned}$	2	2 marks - Correct solution 1 mark - Approaches the restriction in a logical manner
$18 \text { (d) } \quad \begin{aligned} \text { \# triangles } & ={ }^{10} \mathbf{C}_{3}-{ }^{4} \mathbf{C}_{3} \\ & =116 \end{aligned}$	2	2 marks - Correct solution 1 mark - Selects three points from ten, without considering the implication of the collinear points
18 (e) Case 1:3 red plus 1 other colour $\begin{aligned} & =2 \times \frac{4!}{3!} \\ & =8 \end{aligned}$ Case 2: 2 red plus 2 blue $=\frac{4!}{2!2!}$ $=6$ $\begin{aligned} \text { Case 3: } 2 \text { of one colour plus } 2 \text { other colours } & =2 \times \frac{4!}{2!} \\ & =24 \end{aligned}$ $\text { Total } \# \text { signals }=8+6+24$ $=38$	3	3 marks - Correct solution 2 marks - Finds the correct number of ways in their different cases 1 mark - Considers different cases in an attempt to solve the problem

