Name:	Maths	Class:	******************
-------	-------	--------	--------------------

SYDNEY TECHNICAL HIGH SCHOOL

Year 11 Mathematics Extension 1

Preliminary HSC Course Assessment 2

July, 2015

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A set of Standard Integrals is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice Questions 1-5 5 Marks

Section II Questions 6-11 60 Marks

Choose the most appropriate answer from the choices, and fill in the circle on the multiple-choice answer sheet provided in your answer booklet

- 1 The gradient of the tangent to the curve $y = 5x x^3 2$ at the point (2, 0) is
 - **A.** 6
- **B**. 2

C. -2

D. -7

$$\lim_{x \to 2} \frac{x^2 - 6x + 8}{x - 2} =$$

- **A.** 0
- B. -2
- **C.** 6
- D. ∞
- 3. The acute angle between the lines x = 3 and 3x 2y 5 = 0, to the nearest degree, is:
 - **A.** 56°
- **B**. 124°
- C. 34°
- D. 144°

- If y = 5t and $x = t^2$ then $\frac{dy}{dx} =$
 - **A.** 5

B. 2t

- C. $\frac{5}{2t}$
- $\mathbb{D}. \quad \frac{1}{2t}$

5 In the diagram at right, $f(x) = x^2$

P is the point (x, y) on the curve

Q is another point on the curve which has an x value of x + h

The slope of the secant PQ is given by

$$\mathbf{B.} \quad \frac{(x+h)^2}{h}$$

$$\mathbb{D}. \quad 2x+h$$

SECTION II

Start each new question on a new page

QUESTION 6: (10 Marks)

		Marks
(a)	If $0^o \le \theta \le 90^o$ and $\cos \theta = x$ find $\sin 2\theta$ in terms of x	2
(b)	Find the distance between the lines $2x + 3y = 6$ and $2x + 3y + 4 = 0$ as a simplified surd.	3
(c)	The interval joining the points A (-1, 5) to B(2, -1) is divided by the point M externally in the ratio 3:2.	2
	Find the co-ordinates of M.	
(d)	Show that $\tan x = \frac{1 - \cos 2x}{\sin 2x}$	3

QUESTION 7: (10 Marks) (Start a New Page)

(a) Find derivatives of

(i)	$y = \frac{3}{x}$		1
	$y = 5\sqrt{x}$		1
(11)	y — 3Vx		2

- (iii) $y = (2x^3 1)(x^2 + 1)^3$ (give the answer in fully factored form)
- (b) A is the point (3, 0) and B is on the y axis.

 AB makes an angle of 135° with the positive x-axis.

BC is drawn perpendicular to AB.

(i) Find the equation of the line BC

2

(ii) You are further given that C lies on the (negative) x-axis. Find the area of $\triangle ABC$

1

3

Marks

(c) In the diagram at right, $\triangle ABQ$ is right-angled at B.

$$\angle QAP = \beta$$
 and $\angle PAB = \alpha$
PQ = PB = 1 unit
AB = x units

Prove that $\tan \beta = \frac{x}{x^2 + 2}$

QUESTION 8: (10 Marks) (Start a New Page)

Marks

- Show that the gradient of the tangent to the curve $y = \frac{x^3}{1+x^2}$ is always positive except at the origin.
- (b) (i) Find the exact value of tan 15° in simplified form 2
 - (ii) Hence find the value of $\cot 15^o + \tan 15^o$
- (c) Solve the equation $2\sin^2 x + \cos x 2 = 0$, for $0^{\circ} \le x \le 360^{\circ}$
- (d) For the circle $x^2 + y^2 = 16$, A and B are the points where the graph cuts the x-axis.

B A A

- (i) Find an expression for the gradient of PA
- (ii) Hence prove that $\angle APB = 90^{\circ}$

P(a, b) is a point on the circle

QUESTION 9: (10 Marks) (Start a New Page)

Marks

(a) (i) Find the value of f'(8) if $f(x) = \frac{2}{\sqrt{x-4}}$

2

(ii) Hence, find the equation of the normal to the curve y = f(x) at the point on it where x = 8

2

(b) Using the method of Differentiation from First Principles, find $\frac{dy}{dx}$ if $y = x^2 + x$

3

(c) The angle between the 2 lines shown below is 30°.

3

Show that *m* has the value $\frac{18+5\sqrt{3}}{11}$

QUESTION 10: (10 Marks) (Start a New Page)

			Mark
(a)	(i)	Express $\cos\theta - \sin\theta$ in the form $R\cos(\theta + \alpha)$,	2
		where $R > 0$ and $0^{\circ} \le \alpha \le 90^{\circ}$	
	(ii)	Hence, or otherwise, solve $\cos\theta - \sin\theta = 1$ for $0^{\circ} \le \theta \le 360^{\circ}$	2
	(iii)	What is the maximum value that $\cos\theta - \sin\theta$ can take be? Explain your answer.	1

(b) Two men, A and B, are standing on level ground at points 100 metres apart.

From A, who is due south of a perpendicular tower, the angle of elevation to the top of the tower is 55° . B, who is due east of the tower, notes that the tower has an angle of elevation of 40°

3

2

(i) If h is the height of the towers, prove that

$$h^2 = \frac{10\ 000 tan^2 40^o tan^2 55^o)}{tan^2 40^o + tan^2 55^o}$$

(ii) Find the height of the tower, to the nearest metre.

QUESTION 11: (10 Marks) (Start a New Page)

			warks
(a)	Shade the area given by the relationship	$ x \le y $	3

(b) (i) Prove that
$$\cos 3A = 4\cos^3 A - 3\cos A$$

(ii) Using the above, solve
$$4\cos^3 A - 3\cos A = 1$$
 for $0^o \le A \le 360^o$

(b) AB is a diameter of the circle
$$(x-2)^2 + (y-2)^2 = 4$$
, where A is the closest point on the circle to the Origin $(0, 0)$.

Find an unsimplified expression for the x-co-ordinate of B.

END OF EXAMINATION PAPER

	" X		il ii	X .	MUESTO	(5)	# 6 8 1 8	2					# X=0	(6) 1 40							. <u></u>	l ti	11	d		
Sinze	ŀ	- LHS	2	(a) i. q = 3	dd = -3x-2		ii, y = 5x \frac{1}{2}	#	" 5 2 X	$iii y = (2x^3 - 1)(x^2 + 1)^3$			$\frac{dy}{} = \frac{6x^2(x^2+1)^3 + (2x^3-1) \cdot 6x(x^2+1)^2}{}$	1	$= 6x(x^2+1)^{\frac{1}{2}}(3x^3+x-1)$	Total Control of the	$(b)(i) m_{Bc} = 1 \qquad B(b,3)$	y - 3 = 1(x - b)	4 = 2+3	(ii) AC= 6 unts OB= 3 unts	A = 2x6x3	2 d u 2	(c) $\tan \beta = \tan \left[(\alpha + \beta) - \alpha \right]$	= tan (a+p) - tan a	1+ tan(0+8) tan a	1+2-4
SECTION I	A	2 B	3 C	4 C	5 D		SECTION II	QUESTION 6	(a) $\sin 2\theta = 2\sin\theta\cos\theta$	$\frac{1}{\sqrt{1-x^2}} = 2\sqrt{1-x^2}(\chi)$	= 2x/1-x2	ŗ	(b) A point on 2x + 3y=6 is (30)	P= 2x3+3x0+4		1/3 1/3		M (8-13)	A(-1,S) B(2,-1) R; k,=-3:2	$M = \left(\begin{array}{cccc} -3x2 + 2x - 1 & -3x - 1 + 2x5 \\ & & -1 & & \end{array} \right)$	^	= (8,-13)	(d) RHS = 1- cos 2x			

\(\frac{\chi}{\chi} \) =	(c) 2 sin ² x + cocx - 2 - c
x2+2	-7- Yem
1	$2(1-\cos^2 x) + \cos x - 2 = 0$
$= \frac{x}{x} \times \frac{x^2+2}{x^2+2}$	2-2052x + 05x - 2= 0
272	7
QUESTION B	= \1 - \200
$(a) u = x^3 v = 1 + x^2$	
ما	20 0
$\frac{dy}{dx} = \frac{3x^2(1+x^2) - x^3x 2x}{(1+x^2)^2}$	$\chi = 40,270$ $\chi = 60,300$
= 3x²+ x⁴	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
(1+32)2	
l Ui	
and denomination are positive for	8
all x , x≠0	· 114.B at
Š	10 x mpg = b = a2-16
(b) i, tan 15° = tan (45° 30)	and since $a^2 + b^2 = 16$
= tar. 45°-tar 30°	
1 tan 45 tan 30°	11 62
11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	PBPB
1 (8)	DA is perpendiciple of the DB
√3+1	FI.
= 2-13	,, ,
ii. Oct 15°+ tan 15°	11
= 2-13 + 2-13	$f'(y) = 2 \times \frac{1}{2}$
= 2+13 +2-13	1
4	$f'(g) = \frac{1}{\sqrt{3\chi}}$
	1
:	

- Bru	(a)	4	6							ઉ				Straig	Õ		
12 005 (0+45°)	sing = 1	Cas (0+45°) = 13	1 -0/11	for all A	Sinθ < 12	AD= 26 and BD= y	4 = h tan 40.	$x^2 + y^2 = 100^2$	$\frac{2}{40} = 100^{2}$	h tan 40° + h tan 55° = 1002 ton 55° ton 240	h ² (ton ² 40'+ tan ² 35)= 10000 tan ³ 55 _{ta}	", h = 10 000 tan 55° tan 40°	tan-40 + tan 255°				
cost- sint	ii. $\cos \theta - \sin \theta = 1$ $\sqrt{2} \cos (\theta + 45^{\circ}) = 1$	0+4		III. COS A <	13 43 sp · ·	(b) i. let AD = 36 a	x = h tan 55°	-0,	ten 55 tan 40	h tan 40° + h tan 5 tan 40°	h ² (tcn ² 40' + ta	h ² = 10 000	ii. h = 72 m		ن من		
Mormal = 8 (8,1) $y - 1 = 8(x - 8)$	$\therefore \ \psi = 8x - 63$ $\frac{1}{h} \psi = \frac{1}{h}$	= (Fin	$= \lim_{\substack{h \to 0 \\ 1 \nmid h > 0}} x^2 + 2xh + h^2 + x + h - x^1 - x$	1 h 22 cth =	= 22.41	$m_1 = m$ and $m_2 = \frac{1}{2}$ tange = $m_1 - m_2$	1+M,M2	1	m(243-1) = 2+43 m = 2+13	•	- 8+5/3		10 R= 12	Using cos (0+x) = cos 0 cos ca- sin Bsix	Sin 0 = 12 (15 cos - 12 sin a)	Bs of = 12	b(= 45°
:=	b	(b) dx				(2)	150	J3m	7) u			Our Control	$\frac{\text{autshon 10}}{(a) \text{ i.} R = \sqrt{2}}$	Using a	ωsθ- sinθ		A COMMISSION OF THE PROPERTY O

RUESTION II
(a) ///////
(b) 1. Prove cos 34 = 4 cos 34 - 3 cos A
LHS = ∞s (2A + A)
= 605 2A COS A - SIN 2A SIN A.
= (2 cos2A-1) cosA - 2 smA cosA sin A
= 2003A- 005A - 2 sin2A cosA
= 2 cos3A - cosA - 2(1- cos2A) cosA
= 4 cos3 A - 3 cos A
= RHS
ii, 4 0053A-305A=1 0° ≤ A ≤ 360°
> 48 > 0 = 3A <
3A = 0, 360°, 726°, 1080°
A= 0, 120, 240, 360
В
Since BC = 2
then 08 = 2\sum_2 + 2
1 1
Short it is are in a For B: OR at a = 4
$\frac{x^2 + x^2}{2\sqrt{2} + 2} = (2\sqrt{2} + 2)^2$
mc ² 250
uzn x .;
2VZ x = (6+4/2