

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2005

YEAR 11 ACCELERATED
YEARLY EXAMINATION
(ASSESSMENT TASK \#3)

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 72

- Attempt questions 1 - 4
- All questions are of equal value.

Examiner: AM Gainford

Section A

(Start a new booklet.)

Question 1. (18 Marks)
(a) Find the equation of the tangent at the point $(1,7)$ on the parabola $y=x^{2}+3 x+3$. Give your answer in general form $(A x+B y+C=0)$.
(b) Differentiate, and simplify where possible:
(i)

$$
\frac{1}{2 x^{2}+1}
$$

(ii)

$$
\sin ^{2} 3 x
$$

(iii) $\cos x \sin x$
(iv)

$$
\frac{e^{x}}{1+e^{x}}
$$

(c) Find the second derivative of $x e^{-x}$.
(d) Write down a primitive (indefinite integral) of $\sqrt{x^{5}}$.
(e) Use Simpson's Rule with five function values to find an approximation to

$$
\int_{1}^{3} \frac{1}{1+x^{2}} d x
$$

Express your answer correct to four significant figures.

Section B

(Start a new booklet.)

Question 2. (18 Marks)
(a) Write down primitive functions of
(i) $\cos 2 x$
(ii) $\quad e^{2 x}+e^{-2 x}$
(iii) $\frac{x}{1+x^{2}}$
(b) Two particles A and B move along a straight line so that their displacements from the origin at time t are given respectively by:

$$
x_{A}=6 t+5 \quad x_{B}=3 t^{2}-t^{3}
$$

(i) Which is moving faster when $t=1$?
(ii) Show that the particles never travel at the same speed.
(iii) What is the acceleration of particle B when $t=2$?
(iv) What is the maximum positive displacement of particle B ?
(c) Evaluate
(i) $\quad \int_{1}^{2}\left(x^{3}+\frac{1}{x^{2}}\right) d x$
(ii) $\quad \int_{0}^{1} \frac{d x}{2 x+1} \quad$ (Leave your answer in exact form.)
(iii) $\quad \int_{0}^{2} \frac{2 x}{\sqrt{x^{2}+1}} d x$ (Leave your answer in exact form.)

Section C

(Start a new booklet.)

Question 3 (18 Marks)

(a) (i) Find the derivative of $\log _{e}(\cos x)$.
(ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \tan x d x$, leaving your answer in exact form.
(b) Sketch the graph of $y=2 \sin \frac{1}{2} x+2$ from $x=-\pi$ to $x=\pi$.
(c)

The graph shows the derivative function y^{\prime} of a function $y=f(x)$.
On a diagram in your answer booklet sketch the graph of a possible $f(x)$.
(d) Consider the curve $y=\frac{1}{12}\left(x^{4}+4 x^{3}+6 x^{2}\right)$
(i) Identify and determine the nature of any turning points.
(ii) Identify any points of inflexion.
(iii) Sketch the curve showing the above features, and intersections with the coordinate axes.
(e) The rate at which the solvent in nail polish will evaporate is given by $\frac{d V}{d t}=\frac{1}{400}\left(1-\frac{t}{60}\right)$, where $V \mathrm{ml}$ is the volume of solvent present and t is in seconds.
(i) How much solvent will evaporate in the first 30 seconds?
(ii) When does the evaporation cease, and how much solvent will have evaporated then?

Section D

(Start a new booklet)

Question 4 (18 Marks)

(a) Consider the curves $y=\ln x$ and $y=\ln 3 x$.
(i) Show that the tangents to the curves at $x=1$ are parallel.
(ii) The line $x=1$ cuts the curves at P and Q respectively. Find the distance $P Q$.
(iii) Show that the vertical distance between any two points on the curves with the same x-value is constant.
(b) A toy football has a long cross-section described by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$.
(Measurements are in centimeters.)
The part of the curve above the x-axis is rotated about the x-axis to sweep out the solid shape.

Find the volume of the football in exact form.
(c) The mass in grams of a certain radioactive substance may be expressed as $M=M_{0} e^{-k t}$, where t is the time in years, and k and M_{0} are positive constants.
(i) Show that $\frac{d M}{d t}=-k M$.
(ii) At time $t=0, M=20$. Find M_{0}.
(iii) After 5 years the mass is 18 grams. Find the value of k (correct to 4 significant figures).
(iv) Find when the mass will be 10 grams.
(d) (i) Indicate by shading on a diagram the region of the plane bounded by the x axis, the line $x=e$, and the curve $y=\ln x$.
(ii) Calculate the area of this region, giving your answer in exact form.

This is the end of the paper.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

SYDNEY BOYS HIGH SCHOOL

moore park, surry hills

2005

YEAR 11 ACCELERATED
YEARLY EXAMINATION
(ASSESSMENT TASK \#3)

Mathematics

Sample Solutions

Section	Marker
A	PB
\mathbf{B}	DH
\mathbf{C}	CK
D	PSP

Question 1.
(a)

$$
\begin{gathered}
y=x^{2}+3 x+3 \\
\frac{d y}{d x}=2 x+3 \\
a t(1,71 m=2+3=5 \\
T: \frac{y-7}{x-1}=5 \\
\frac{y-7}{}=5 x-5 \\
5 x-y+2=0
\end{gathered}
$$

(b)

$$
\begin{aligned}
& \text { (') } y=\frac{1}{2 x^{2}+1}=\left(2 x^{2}+1\right)^{-1} \\
& y^{\prime}=-\left(2 x^{2}+1\right)^{-2} \times 4 x . \\
& y^{\prime}=\frac{-4 x}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
$$

(II)

$$
\begin{aligned}
& y=\sin ^{2} 3 x=(\sin 3 x)^{2} \\
& y^{\prime}=2(\sin 3 x)^{\prime} \cdot 3 \cdot \cos 3 x \\
& y^{\prime}=6 \sin 3 x \cdot \cos 3 x
\end{aligned}
$$

(III) $y=\cos x \cdot \sin x$.

$$
\begin{aligned}
& y^{\prime}=\frac{\cos x \cdot \cos x+-\sin x \cdot \sin x .}{y^{\prime}=\cos ^{2} x-\sin ^{2} x}
\end{aligned}
$$

(N)

$$
\begin{aligned}
& y=\frac{e^{x}}{1+e^{x}} \\
& \left.y^{\prime}=\frac{\left(1+e^{x}\right) \cdot e^{x}-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}} \right\rvert\,=\frac{e^{x}}{\left(1+e^{x}\right)^{2}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
y & =x e^{-x} \\
y^{\prime} & =x-e^{-x}+e^{-x} \\
& =-x e^{-x}+e^{-x} \\
y^{\prime \prime} & =-\left(-x e^{-x}+e^{-x}\right)+-e^{-x} \\
& =x e^{-x}-2 e^{-x}
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int \sqrt{x^{5}} d x & =\int \frac{x^{5 / 2} d x}{} \\
& =\left\lvert\, \frac{2}{7} x^{7 / 2}+c\right.
\end{aligned}
$$

(e)

x	1	1.5	2	2.5	3
y	$\frac{1}{2}$	$\frac{4}{13}$	$\frac{1}{5}$	$\frac{4}{24}$	$\frac{1}{10}$

$$
\begin{aligned}
\int_{1}^{3} \frac{1}{1+x^{2}} d x & =\frac{0.5}{3}\left[\frac{1}{2}+\frac{1}{10}+4\left(\frac{4}{13}+\frac{4}{29}\right)+2 \times \frac{1}{5}\right] \\
& =0.4637](4.516 .1610 .5)
\end{aligned}
$$

Section B

(a) Write down primitive functions of
(i) $\cos 2 x$

Solution: $\frac{\sin 2 x}{2}$
(ii) $e^{2 x}+e^{-2 x}$

Solution: $\frac{e^{2 x}-e^{-2 x}}{2}$
(iii) $\frac{x}{1+x^{2}}$

Solution: $\frac{1}{2} \int \frac{2 x}{1+x^{2}}=\frac{1}{2} \ln \left(1+x^{2}\right)$
(b) Two particles A and B move along a straight line so that their displacements from the origin at time t are given respectively by:

$$
x_{A}=6 t+5 \quad x_{B}=3 t^{2}-t^{3}
$$

(i) Which is moving faster when $t=1$?

Solution: $\quad \dot{x}_{A}=6, \quad \dot{x}_{B}=6 t-3 t^{2}$.
When $t=1, \quad \dot{x}_{B}=3$.
$\therefore A$ is moving faster.
(ii) Show that the particles never travel at the same speed.

Solution: Method 1, Plotting velocity against time:

Clearly $\dot{x}_{A} \neq \dot{x}_{B}$.

Solution: Method 2, Assume travel at the same speed:

$$
\begin{aligned}
\text { i.e., } 6 & =6 t-3 t^{2}, \\
t^{2}-2 t+2 & =0 . \\
\Delta & =2^{2}-4 \times 2, \\
& =-4 .
\end{aligned}
$$

\therefore There is no real solution and travel at the same speed is not possible.
(iii) What is the acceleration of particle B when $t=2$?

Solution:
 $$
\ddot{x}_{B}=6-6 t
$$

When $t=2, \quad \ddot{x}_{B}=-6$.
(iv) What is the maximum positive displacement of particle B ?

Solution: For maximum or minimum, $\dot{x}_{B}=0$

$$
\text { i.e, } \begin{aligned}
6 t-3 t^{2} & =0 \\
t(2-t) & =0 \\
t & =0,
\end{aligned}
$$

When $t=0, \quad x_{B}=0, \quad \ddot{x}_{B}=6$.
When $t=2, \quad x_{B}=4, \quad \ddot{x}_{B}=-6$.
\therefore Maximum positive displacement is 4 .
(c) Evaluate
(i) $\int_{1}^{2}\left(x^{3}+\frac{1}{x^{2}}\right) d x$

$$
\text { Solution: } \begin{aligned}
\int_{1}^{2}\left(x^{3}+\frac{1}{x^{2}}\right) d x & =\left[\frac{x^{4}}{4}-\frac{1}{x}\right] \\
& =\left(4-\frac{1}{2}\right)-\left(\frac{1}{4}-1\right), \\
& =4 \frac{1}{4} .
\end{aligned}
$$

(ii) $\int_{0}^{1} \frac{d x}{2 x+1} \quad$ (Leave your answer in exact form.)

Solution: $\quad \frac{1}{2} \int_{1}^{2} \frac{2 d x}{2 x+1}=\frac{1}{2}[\ln (2 x+1)]_{1}^{2}$,

$$
\begin{aligned}
& =\frac{1}{2}\{\ln 3-\ln 1\}, \\
& =\frac{1}{2} \ln 3 .
\end{aligned}
$$

(iii) Not counted towards exam.

QUESTION 3
(a) (i)

$$
\begin{aligned}
\log _{e}[\cos x] & =-\frac{\sin x}{\cos x} \\
& =-\tan x
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{4}} \tan x d x & =-\left[\log _{e} \cos x\right]_{0}^{\frac{\pi}{4}} \\
& =-\left[\log _{e} \frac{1}{\sqrt{2}}-\log _{e} 1\right] \\
& =-\log _{e} \frac{1}{\sqrt{2}} \\
\text { or } & =\frac{1}{2} \log _{e} 2
\end{aligned}
$$

b) $y=2 \sin \frac{x}{2}+2$

(c)

(ii) Ceases when $\frac{d V}{d t}=0 \Rightarrow t=60 \mathrm{sec}$

$$
\begin{aligned}
V(60)-V(0) & =\left(\frac{60}{400}-\frac{3600}{48000}+c\right)-c^{4} \\
& =\frac{3}{40} \\
& =0.075 \mathrm{~mL}
\end{aligned}
$$

(d) $y=\frac{1}{12}\left[x^{4}+4 x^{3}+6 x^{2}\right]$
(i)

$$
y^{\prime}=\frac{1}{3} x^{3}+x^{2}+x=0
$$

when $x\left(x^{2}+3 x+3\right)=0$
ie when $x=0$

$$
x^{2}+3 x+3=0
$$

has no real Solutions

$$
y^{\prime \prime}=x^{2}+2 x+1
$$

When $x=0, y^{\prime \prime}=1 \Rightarrow$
MIN T.P at $(0,0)$ I
(ii) For P.O.I. $y^{\prime \prime}=0$ when $x=-1$

| $x<$ | -1 | $>$ |
| :--- | :--- | :--- | :--- |
| $y^{\prime \prime} \mid+$ | 0 | + |

No change of concavity at $x=-1$ \Rightarrow No P.O.I.
(iii)

(e) $\frac{d V}{d t}=\frac{1}{400}\left[1-\frac{t}{60}\right]$

$$
V=\int \frac{1}{400}\left[1-\frac{t}{60}\right] d t
$$

ie $V=\frac{t}{400}-\frac{t^{2}}{48000}+c$

$$
\begin{aligned}
t=0, v & =c \\
t=30, v & =\frac{9}{160}+c \\
\therefore v(30)-v(0) & =\frac{9}{160} \mathrm{~mL} \\
& =0.05625 \mathrm{~mL}
\end{aligned}
$$

Section D

(4)
(a) (i) $y=\ln x \Rightarrow y^{\prime}=\frac{1}{x}$

$$
\begin{aligned}
& \therefore m_{x=1}=\frac{1}{1}=1 \\
& y=\ln 3 x \Rightarrow y^{\prime}=\frac{3}{3 x}=\frac{1}{x} \\
& \therefore m_{x=1}=\frac{1}{1}=1
\end{aligned}
$$

So the two tangents are parallel as they have the same gradient.
(ii) $x=1 \Rightarrow$
$P(1, \ln 1)=P(1,0)$
$Q(1, \ln 3)$
$\therefore P Q=\ln 3$ units
(iii) $\ln 3 x=\ln 3+\ln x$

So the vertical separation is always $\ln 3$ units.
Alternatively
$P^{\prime}(x, \ln x), x>0$
$Q^{\prime}(x, \ln 3 x) ., x>0$
$\therefore P^{\prime} Q^{\prime}=\ln 3 x-\ln x=\ln \left(\frac{3 x}{x}\right)=\ln 3$
(b)

When the slice of thickness Δx is rotated about the x axis, it will approximately a cylinder of radius y units and height of Δx units. Let V be the volume of the toy and let ΔV be the volume of this approximate cylinder.

$$
\begin{aligned}
\Delta V & \approx \pi y^{2} \Delta x \\
& =\pi\left(\frac{36-4 x^{2}}{9}\right) \Delta x
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{\pi}{9} \int_{-3}^{3}\left(36-4 x^{2}\right) d x=2 \times \frac{\pi}{9} \int_{0}^{3}\left(36-4 x^{2}\right) d x \\
& =\frac{2 \pi}{9}\left[36 x-\frac{4 x^{3}}{3}\right]_{0}^{3} \\
& =\frac{2 \pi}{9}(108-36) \\
& =16 \pi \text { units }^{3}
\end{aligned}
$$

(c) (i) $M=M_{0} e^{-k t}$

$$
\begin{aligned}
\mathrm{LHS} & =\frac{d M}{d t} \\
& =-k \underbrace{M_{0} e^{-k t}}_{M} \\
& =-k M \\
& =\text { RHS }
\end{aligned}
$$

(ii) $t=0, M=20=M_{0} e^{0} \Rightarrow M_{0}=20$
(iii) $\quad M=20 e^{-k t}$

$$
\begin{aligned}
& \therefore 18=20 e^{-5 k} \\
& \therefore e^{-5 k}=\frac{9}{10} \\
& \therefore-5 k=\ln \frac{9}{10} \\
& \therefore k=-\frac{1}{5} \ln \frac{9}{10}=\frac{1}{5} \ln \frac{10}{9} \approx 0 \cdot 02107
\end{aligned}
$$

(iv) $10=20 e^{-k t}$

$$
\begin{aligned}
& \therefore e^{-k t}=\frac{1}{2} \\
& \therefore-t k=\ln \frac{1}{2}=-\ln 2 \\
& \therefore t=\frac{\ln 2}{k} \approx 32.9
\end{aligned}
$$

So in approximately 33 years.
(d) (i)

(ii) The shaded area is given by $\int_{1}^{e} \ln x d x$.

This area is equal to the difference in the areas of $A B C D$ and $A B D E$. $y=\ln x \Rightarrow x=e^{y}$.
The area of $A B D E$ is given by $\int_{0}^{1} e^{y} d y$.
The area of $A B C D$ is simply the rectangle with area e square units.

$$
\begin{aligned}
\int_{1}^{e} \ln x d x & =e-\int_{0}^{1} e^{y} d y \\
& =e-\left[e^{y}\right]_{0}^{1} \\
& =e-(e-1) \\
& =1
\end{aligned}
$$

So the shaded area is 1 square unit.

