

SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

2007

YEAR 11 ACCELERATED
YEARLY EXAMINATION
(ASSESSMENT TASK \#3)

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each question is to be returned in a separate booklet.
- All necessary working should be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.

Total Marks - 72

- Attempt questions 1 - 4
- All questions are of equal value.

Examiner: AM Gainford

Question 1. (18 Marks) (Start a new booklet.)

(a) Find the equation of the tangent to the curve $y=3 x+e^{-x}$ at the point where $x=0$.

Give your answer in general form ($A x+B y+C=0$).
(b) Differentiate, and simplify where possible:
(i)

$$
5(3-x)^{9}
$$

(ii) $\tan ^{2} 2 x$
(iii) $\quad x \log _{e}(x+1)$
(iv) $\quad \frac{1+e^{x}}{1-e^{-x}}$
(c) Find the second derivative of $x^{2} \sin x$.
(d) Write down a primitive (indefinite integral) of $\frac{1}{x \sqrt{x}}$.
(e) Use Simpson's Rule with five function values to find an approximation to

$$
\int_{-2}^{2} 3^{x} d x
$$

Express your answer correct to one decimal place.

Question 2. (18 Marks) (Start a new booklet.)

(a) Write down primitive functions of
(i) $\sin 3 x$
(ii) $2 e^{-2 x}$
(iii) $\frac{1}{1+x}-\frac{1}{1-x} \quad$ (Simplify your answer.)
(b) A particle moves along a straight line, its distance from the origin being given as a function by

$$
x=\cos ^{2} t
$$

(i) Sketch the displacement-time graph for $0 \leq t \leq 2 \pi$.
(ii) Find the equations for velocity v and acceleration f, in terms of t.
(iii) Show that for all $t, f=2-4 x$.
(c) Evaluate
(i) $\quad \int_{1}^{2}\left(\frac{x^{4}+x}{x^{3}}\right) d x$
(ii) $\quad \int_{0}^{1} \frac{d x}{3 x+1}$ (Leave your answer in exact form.)
(iii) $\int_{0}^{\ln 7}\left(1-e^{-x}\right) d x$ (Leave your answer in exact form.)

Question 3 (18 Marks) (Start a new booklet.)

(a) (i) Show that the derivative of $\cot ^{3} x$ is $3 \operatorname{cosec}^{2} x-3 \operatorname{cosec}^{4} x$.
(ii) Hence find $\int \operatorname{cosec}^{4} x d x$.
(b) Sketch the graph of $y=3 \cos \frac{1}{2} x+3$ from $x=-\pi$ to $x=\pi$.
(c) A function $f(x)$ is such that $f^{\prime \prime}(x)=6 x-8$, and when $x=0, f^{\prime}(x)=1$ and $f(x)=2$. Find an expression for $f(x)$.
(d) Consider the curve $y=7+4 x^{3}-3 x^{4}$
(i) Find the coordinates of the two stationary points.
(ii) Find all values of x for which $\frac{d^{2} y}{d x^{2}}=0$.
(iii) Determine the nature of the stationary points.
(iv) Sketch the curve for the domain $-1 \leq x \leq 2$.
(e) The rate at which fuel burns, $R \mathrm{~kg} / \mathrm{min}$, in a jet engine t minutes after it starts operation is given by the relation

$$
R=10+\left(\frac{10}{1+2 t}\right)
$$

(i) What is the rate of burn, R, after 7 minutes?
(ii) What value does R approach as t becomes very large?
(iii) Calculate the total amount of fuel burned in the first 7 minutes?

Question 4 (18 Marks) (Start a new booklet)

(a) Show that the triangle whose sides satisfy $3 x+y+1=0, x-3 y+2=0, x+y-1=0$ is right-angled.

Find the length of the hypotenuse (in simplest surd form).
(b) Find the volume of the solid generated when the area bounded by the curves $y=\sec x$ and $y=x$, and the lines $x=0$ and $x=1$ is rotated about the x-axis.
(c) A ship's engines are turned off while the ship is still moving through the water. The ship's speed, V metres per second, then decreases according to the rule

$$
V=A e^{-k t}
$$

where t represents time measured in seconds, and A and k are constants.
(iii) Show that $\frac{d V}{d t}=-k V$.
(iii) Initially the ship is moving at 12 metres per second. Find the value of A.
(iii) Six minutes after the engines are turned off, the speed has fallen to 5 metres per second. Evaluate k, correct to four significant figures.
(iv) What is the ship's speed after ten minutes? (Answer correct to four significant figures.)
(d) In the diagram the line $R S$ meets the x and y axes at R and S respectively, and it passes through the point $(1,2)$. The angle ORS measures θ radians.
(iii) Show that the equation of the line $R S$ may be written as

$$
y=-x \tan \theta+2+\tan \theta
$$

(iii) Find the area of the triangle $O R S$ in terms of $\tan \theta$.
(iii) Find the value of θ, correct to the nearest minute, for which this area is a minimum

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0 \text {, if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \\
& \int \sec ^{2} a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, x>0
\end{aligned}
$$

Additional Integral $\int \operatorname{cosec}^{2} x d x=-\cot x+C$

2007 Yearly Accelerated Mathematics: Solutions- Question 1

1. (a) Find the equation of the tangent to the curve $y=3 x+e^{-x}$
at the point where $x=0$.
Give your answer in general form $[A x+B y+C=0]$.
Solution: When $x=0, y=1$.

$$
\begin{aligned}
\frac{d y}{d x} & =3-e^{-x} \\
& =2 \text { when } x=0 .
\end{aligned}
$$

\therefore The tangent is: $y-1=2(x-0)$,

$$
\text { i.e. } 2 x-y+1=0 \text {. }
$$

(b) Differentiate, and simplify where possible:
(i) $5(3-x)^{9}$

Solution: $-1 \times 5 \times 9 \times(3-x)^{8}=-45(3-x)^{8}$.
(ii) $\tan ^{2} 2 x$

Solution: $2 \times \sec ^{2} 2 x \times 2 \times \tan 2 x=4 \sec ^{2} 2 x \tan 2 x$.
(iii) $x \log _{e}(x+1)$

Solution: $\ln (x+1)+\frac{x}{x+1}$.
(iv) $\frac{1+e^{x}}{1-e^{-x}}$

Solution:

$$
\begin{aligned}
\frac{\left(1-e^{-x}\right) \times e^{x}-\left(1+e^{x}\right) \times(-1) \times\left(-e^{-x}\right)}{\left(1-e^{-x}\right)^{2}} & =\frac{e^{x}-1-e^{-x}-1}{\left(1-e^{-x}\right)^{2}}, \\
& =\frac{e^{x}-e^{-x}-2}{\left(1-e^{-x}\right)^{2}}
\end{aligned}
$$

(c) Find the second derivative of $x^{2} \sin x$.

Solution: $\quad \frac{d}{d x}\left(x^{2} \sin x\right)=2 x \sin x+x^{2} \cos x$.

$$
\begin{aligned}
\frac{d^{2}}{d x^{2}}\left(x^{2} \sin x\right) & =2 \sin x+2 x \cos x+2 x \cos x-x^{2} \sin x \\
& =\left(2-x^{2}\right) \sin x+4 x \cos x
\end{aligned}
$$

(d) Write down a primitive (indefinite integral) of $\frac{1}{x \sqrt{x}}$.

$$
\text { Solution: } \begin{aligned}
\int x^{-3 / 2} d x & =-2 x^{-1 / 2}+c \\
& =-\frac{2}{\sqrt{x}}+c
\end{aligned}
$$

(e) Use Simpson's Rule with five function values to find an approximation to

$$
\int_{-2}^{2} 3^{x} d x
$$

Express your answer correct to one decimal place.

Solution: | x | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3^{x} | 0.111 | 0.333 | 1 | 3 | 9 |

$$
\begin{aligned}
\int_{-2}^{2} 3^{x} d x & \approx \frac{1}{3}\{1 \times 0.111+4 \times 0.333+2 \times 1+4 \times 3+1 \times 9\} \\
& \approx 8.1
\end{aligned}
$$

Question 2
a) i) $\int \sin 3 x d x=-\frac{1}{3} \cos 3 x+c$
ii) $\int 2 e^{-2 x} d x=\frac{2}{-2} e^{-2 x}+C$

$$
\begin{equation*}
=-e^{-2 x}+c \tag{2}
\end{equation*}
$$

iii) $\int\left(\frac{1}{1+x}-\frac{1}{1-x}\right) d x$

$$
\begin{aligned}
& =\int\left(\frac{1}{1+x}+\frac{-1}{1-x}\right) d x \\
& =\ln (1+x)+\ln (1-x)+c,-1<x<1 \\
& =\ln \left(1-x^{2}\right)+c
\end{aligned}
$$

b)i) $x=\cos ^{2} t$

$$
\text { ii) } \left.\begin{array}{rl}
x & =(\cos t)^{2} \\
\dot{x} & =2(\cos t)-\sin t \\
V=\dot{x} & =-2 \sin t \cos t \\
u=-2 \sin t \\
u^{\prime}=-2 \cos t
\end{array} \quad \begin{array}{l}
v=\cos t \\
v^{\prime}=-\sin t
\end{array}\right] .
$$

iii)

$$
\begin{align*}
& f=2 \sin ^{2} t-2 \cos ^{2} t \quad \sin ^{2} x+\cos ^{2} x=1 \\
& f=2\left(1-\cos ^{2} t\right)-2 \cos ^{2} t \\
& f=2-4 \cos ^{2} t \\
& f=2-4 x \tag{2}
\end{align*}
$$

c) i)

$$
\begin{align*}
& \int_{1}^{2}\left(\frac{x^{4}+x}{x^{3}}\right) d x \\
& =\int_{1}^{2}\left(x+x^{-2}\right) d x \\
& =\left[\frac{x^{2}}{2}+\frac{x^{-1}}{-1}\right]_{1}^{2} \\
& =\left[\frac{x^{2}}{2}-\frac{1}{x}\right]_{1}^{2} \\
& =\frac{(2)^{2}}{2}-\frac{1}{2}-\left(\frac{(1)^{2}}{2}-\frac{1}{1}\right) \\
& =2 \tag{2}
\end{align*}
$$

$$
\text { ii) } \begin{aligned}
& \int_{0}^{1} \frac{d x}{3 x+1} \\
= & \frac{1}{3} \int_{0}^{1} \frac{3 d x}{3 x+1} \\
= & {\left[\frac{1}{3} \ln (3 x+1)\right]_{0}^{1} } \\
= & \frac{1}{3} \ln (3(1)+1)-\frac{1}{3} \ln (3(0)+1) \\
= & \frac{1}{3} \ln 4-\frac{1}{3} \ln T \\
= & \frac{1}{3} \ln 4
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \int_{0}^{\ln 7}\left(1-e^{-x}\right) d x \\
& =\left[x-\frac{e^{-x}}{-1}\right]_{0}^{\ln 7} \\
& =\left[x+e^{-x}\right]_{0}^{\ln 7}
\end{aligned}
$$

$$
\begin{align*}
& =\ln 7+e^{-\ln 7}-\left(0+e^{0}\right) \\
& =\ln 7+e^{\ln 7^{-1}}-1 \\
& =\ln 7+\frac{1}{7}-1 \\
& =\ln 7-\frac{6}{7} \tag{2}
\end{align*}
$$

QUESTION3
(a) (i) Given $\int \operatorname{cosec}^{2} x d x=-\cot x$

$$
\begin{aligned}
\Rightarrow \frac{d}{d x}(\cot x) & =-\operatorname{cosec}^{2} x \\
\therefore \frac{d}{d x}(\cot x) & =3\left(\cot ^{2} x\right) \cdot \frac{d}{d c} \cot x \\
& =3\left(\cot ^{2} x\right) \cdot-\operatorname{cosec}^{2} x \\
& =-3 \cot ^{2} x \cdot \operatorname{cosec}^{2} x \\
& =-3\left(\operatorname{cosec}^{2} x-1\right) \cdot \operatorname{cosec}^{2} x \\
& =3 \operatorname{cosec}^{4} x-3 \operatorname{cosec}^{2} x
\end{aligned}
$$

iv) $3 \operatorname{cosec}^{4} x=3 \operatorname{cosec}^{2} x-\frac{d}{d x}(\cot x)^{3}$

$$
\begin{aligned}
& \operatorname{cosec}^{4} x=\operatorname{cosec}^{2} x-\frac{d}{d x} \\
& \operatorname{cosec}^{4} x=\frac{d}{d x}\left[-\cot x-\frac{1}{3}(\cot x)^{3}\right]
\end{aligned}
$$

$$
\therefore \int \operatorname{cosec}^{4} x d x=-\cot x-\frac{1}{3} \cot ^{3} x+c
$$

(b)

(c)

$$
\begin{align*}
f^{\prime \prime}(x) & =6 x-8 \\
f^{\prime}(x) & =3 x^{2}-8 x+c \\
f^{\prime}(0) & =3(0)-8(0)+c=1 \\
& \Rightarrow c=1 \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\therefore f^{\prime}(x)=3 x^{2}-8 x+1 \tag{1}
\end{equation*}
$$

and $f(x)=x^{3}-4 x^{2}+x+c_{1}$

$$
\begin{align*}
f(0) & =0-0+0+c_{1}=2 \\
& \Rightarrow c_{1}=2 \tag{1}
\end{align*}
$$

$\therefore f(x)=x^{3}-4 x^{2}+x+2$
(d)

$$
y=7+4 x^{3}-3 x^{4-}
$$

(i) St.pts $y^{\prime}=12 x^{2}-12 x^{3}=0$

$$
i e-12 x^{2}(x-1)=0
$$

$$
\therefore\binom{x=0}{y=7} \text { or }\binom{x=1}{y=8}
$$

(ii) $y^{\prime \prime}=24 x-36 x^{2}=0$
when $12 x(2-3 x)=0$
ie when $x=0$ or $x=\frac{2}{3}$
(iii) When $x=0, y^{\prime \prime}=0 \therefore$
possible P.O.I.

Change of concaunity \Rightarrow
H.P.O.I at $(0,7)$

* When $x=1, y^{\prime \prime}=-12<0$
\Rightarrow Max T.P. at $(1,8)$

Note: Not required to test $x=\frac{2}{3}$ since it is not a stationary point.

(i) $t=7, R=10 \frac{2}{3} \mathrm{~kg} / \mathrm{min}$
(ii) $\lim _{t \rightarrow \infty}\left(10+\frac{10}{1+2 t}\right)=10$

Since $\frac{10}{1+2 t} \rightarrow 0$ as $t \rightarrow \infty$

$$
\begin{align*}
A & =\int_{0}^{7}\left(10+\frac{10}{1+2 t}\right) d t \\
& =\left[10 t+\frac{10}{2} \log _{e}(1+2 t)\right]_{0}^{7} \\
& =\left(70+\frac{10}{2} \ln 15\right) \mathrm{kg} \\
& =83.5 \mathrm{~kg}
\end{align*}
$$

Q4. (a)

new $l_{1} \equiv y=-3 x-1 . \therefore$ slote in $=-3$.

$$
l_{2} \equiv y=\frac{1}{3} x+\frac{2}{3} \therefore \text { slefe } m_{2}=\frac{1}{3}
$$

\therefore Right-angle at B becauke $-3 \times \frac{1}{3}=-1$.
Solving l, and l_{3} se get the co-ads y
A is $(-1,2)$
timitarly soluing $l_{2} * l_{3}$ we get $C\left(\frac{1}{4}, \frac{3}{4}\right)$
(NB, wasking th the choner)

$$
\begin{aligned}
\therefore \quad A C & =\sqrt{\left(-1-\frac{1}{4}\right)^{2}+\left(2-\frac{3}{4}\right)^{\alpha}} \\
& =\sqrt{\left(\frac{5}{4}\right)^{2}+\left(-\frac{5}{4}\right)^{2}} \\
& =\sqrt{\frac{50}{16}} \\
& =\frac{\sqrt{50}}{4} \\
& =\frac{5 \sqrt{2}}{4}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& V=\pi \int_{0}^{1}\left(\sec ^{2} x-x^{2}\right) d x . \\
&=\pi\left[\tan x-\frac{x^{3}}{3}\right]_{0}^{1} \\
&=\pi\left[\tan ,-\frac{1}{3}\right] u^{3}(V N) . \\
&\left(O R \sim 1.224 \pi \pi^{3} 02 \sim 3.84 i 6 \pi^{3}\right)
\end{aligned}
$$

(c). (i) $V=A e^{-k t \cdot}$

$$
\text { (II) whent }=0 \text {. }
$$

$$
\begin{array}{rlrl}
\frac{d V}{d t} & =A \cdot-k e^{-k t} & V & =12 . \\
& =-k\left(A e^{-k t}\right) & \therefore 12=A e^{0} \\
\therefore \frac{d V}{d t} & =-k V & (V) & \tag{v}
\end{array}
$$

SIII. Now wher $t=6$ mins $=360$ reconds. $V=5$.

$$
\begin{align*}
& \therefore s=12 e^{-360 k} \\
& \frac{5}{12}=e^{-360 k} \\
& \ln \frac{5}{12}=-360 k . \\
& k=-\frac{1}{360} \ln \frac{5}{12} \\
& k \div 2.432 \times 10^{-3}
\end{align*}
$$

(iv)

$$
\binom{V=12 e^{-2.432 \times 10^{-3} \times 600}}{V \div 2.789}(4.5 \%)
$$

$$
\begin{equation*}
(d)_{(n} m=\tan (180-\theta)=-\tan \theta . \tag{1}
\end{equation*}
$$

\therefore Mining $y=\sin x+b$ sphere $(1,2)$
lies on the line.

$$
\begin{align*}
& 2=-\tan \theta \times 1+b . \\
& b=2+\tan \theta . \tag{2}
\end{align*}
$$

\therefore Putin (1) \& D

$$
\begin{aligned}
y & =(-\tan \theta) x+2+\tan \theta . \\
\text { ie } y & =-x \tan \theta+2+\tan \theta
\end{aligned}
$$

(II) $O S$ is the y-intercept of the hie en CO.

$$
\text { ie. } O S=2+\tan \theta \text {. }
$$

$O R$ is ste x-intercept of the hie in al

$$
\text { ie. } O R=\frac{2+\tan \theta}{\tan \theta} \text {. }
$$

$$
\begin{align*}
\therefore \text { Area } y \triangle O R S & =\frac{1}{2} \cdot(2+\tan \theta)\left(\frac{2+\tan \theta)}{\tan \theta}\right. \\
& =\left|\frac{(2+\tan \theta)^{2}}{2 \tan \theta}\right| \quad(r) .
\end{align*}
$$

(1111

$$
\begin{aligned}
& A=\frac{(2+\tan \theta)^{2}}{2 \tan \theta} \\
& =\frac{4+4 \tan \theta+\tan ^{2} \theta}{2 \tan \theta} \\
& \frac{2}{\tan \theta}+2+\frac{\tan \theta}{2} \\
& \frac{d A}{d \theta}=-2 \operatorname{cosec}^{2} \theta+\frac{1}{2} \sec ^{2} \theta \text {. } \\
& \text { Af } \frac{d A}{d \theta}=0 \\
& 2 \operatorname{cocec}^{2} \theta=\frac{1}{2} \sec ^{2} \theta \text {. } \\
& \frac{2}{\sin ^{2} \theta}=\frac{1}{2 \cos ^{2} \theta} . \\
& 4=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} . \\
& \tan ^{2} \theta=4 \\
& \tan \theta=2 \text {. (clearly } \theta \\
& \theta=63^{\circ} 26^{\prime} \text {. inacute. }
\end{aligned}
$$

Lent.

$$
\begin{array}{cccc}
\theta & 60^{\circ} & 63^{\circ} 26^{\prime} & 70^{\circ} \\
A^{\prime} & -\frac{2}{3} & 0 & \sim 2.5 \\
& - & 1 & (V V) .
\end{array}
$$

\therefore fmin uker $\theta=63^{\circ} 26^{\prime}$

