

SYDNEYBOYS HIGE<br>SCHOOL<br>MOORE PARK, SURRY HILIS

## SEPTEMBER 2008

## Yearly Examination

## YEAR 11

## Mathematics (2 unit) Accelerated

## General Instructions

- There is NO reading time.
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Start each NEW question in a separate answer booklet.


## Total Marks - 68

- Attempt questions 1 - 5
- Questions are not of equal value.


## STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x=\ln x, x>0 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x,
\end{aligned}
$$

$$
\int \sec a x \tan a x d x=\frac{1}{a} \sec a x, a \neq 0
$$

$$
\int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0
$$

$$
\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a
$$

$$
\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right) x>a>0
$$

$$
\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
$$

$$
\text { NOTE: } \ln x=\log _{e} x, x>0
$$

Attempt questions 1 to 5
Answer each Question in a Separate writing booklet
(Use a SEPARATE writing booklet)

Question 1 (15 marks)
(a) Evaluate sin 2 correct to 2 decimal places.
(b) Convert $75^{\circ}$ to radians (in terms of $\pi$ ).
(c) Differentiate the following with respect to $x$ :
i. $x^{3}+e^{3}$
ii. $x e^{3 x}$
iii. $\sin ^{3} x$
iv. $\ln \left[\frac{(x+1)^{3}}{x-1}\right]$
(d) If $f(x)=\tan x$, find the exact value of:
i. $f\left(\frac{\pi}{6}\right)$
ii. $f^{\prime}\left(\frac{\pi}{6}\right)$
(e) i. Show that $\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)^{2}=1+\frac{2}{\sqrt{x}}+\frac{1}{x}$.
ii. If $f^{\prime}(x)=\left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)^{2}$ and $f(1)=5$, find $f(x)$.
(Use a SEPARATE writing booklet)

Question 2 ( 15 marks)
(a) Consider the series: $195+191+187+183+\ldots$
i. Write an expression for the $n$th term of the series.
ii. What is the first term less than zero?
iii. What is the sum of all the terms that are greater than zero?
(b) Consider the series: $2-6 x+18 x^{2}-54 x^{3}+\ldots$.
i. For what values of $x$ will a limiting sum exist for the geometric series?
ii. For what value of $x$ is the limiting sum 9 ?
(c) The area bounded by the curve $y=4-x^{2}$ and the $x$-axis is rotated about the $y$-axis. Find the volume of the solid formed in terms of $\pi$.
(d) A tangent to the curve $y=e^{-x}$ meets the $x$ and $y$ axes at equal (positive) distances from the origin. Find the equation of this tangent in general form.

## Question 3 (13 marks)

(a) The population of a small town is increasing at a decreasing rate. Given that $P$ is the population of the town at a given time $t$, what does this statement imply about $\frac{d P}{d t}$ and $\frac{d^{2} P}{d t^{2}}$ ?
(b) Find the fifth term of a series whose sum to $n$ terms is given by $S_{n}=11 n-n^{2}$.
(c) If $\int_{0}^{5} f(x) d x=3$, find $\int_{0}^{5} 3[f(x)+2] d x$.
(d) Solve for $x: \log _{25}(6 x-9)=\log _{5} x$.
(e) A particle, moving in a straight line, at time $t$ seconds has velocity $v=3 t^{2}-18 t+24 \mathrm{~m} / \mathrm{s}$. Initially the particle is at the origin.
i. When is the particle at rest?
ii. State the displacement function.
iii. How far has the particle travelled in the first 4 seconds?
iv. Does the particle return to the origin?

Question 4 (13 marks)
(a) Find a primitive of $\frac{1+e^{-2 x}}{1+e^{2 x}}$
(b) i. Sketch the curve $y=\log _{e}(x+2)$, showing any asymptotes and intercepts with the $x$ and $y$ axes.
ii. Find the exact area enclosed by the curve and the $x$ and $y$ axes.
(c) A graph of the function, $y=x(x-a)^{2}$, for constant $a$, has a local maximum at $P$ and a local minimum at $Q$.

i. Determine the coordinates of $P$ and $Q$ in terms of $a$.
ii. Determine the area bound by the curve and the $x$-axis, between the origin and the point $Q$, in terms of $a$, and hence find the value of $a$ if the area is $\frac{4}{3}$ square units.
(Use a SEPARATE writing booklet)

Question 5 (12 marks)
(a) The parabola $y=a x^{2}+b x+c$ passes through the points $(-1,2),(1,3)$ and $(3,9)$.

Evaluate $\int_{-1}^{3}\left(a x^{2}+b x+c\right) d x$.
(b) $A B$ is a diameter of a semicircle and the chord $A P$ makes an angle of $x$ radians with $A B$. If $A P$ divides the semicircle into two equal areas, prove that $2 x+\sin 2 x=\frac{\pi}{2}$.
(c) In the diagram, the sphere has a diameter of 10 cm . Also, the right circular cone has a height of 10 cm , and its base has a diameter of 10 cm . The sphere and cone sit on a horizontal surface. If a horizontal plane cuts both the sphere and the cone, the cross-sections will both be circles, as shown. Let the radii of the cross-sections of the cone and sphere at height $h$ be $r_{1}$ and $r_{2}$ respectively.
i. Show that $r_{1}^{2}=\left(5-\frac{h}{2}\right)^{2}$ and $r_{2}^{2}=10 h-h^{2}$.
ii. Hence, or otherwise, find the height of the horizontal plane that gives the greatest sum of the cross-sectional areas.


## End of paper

2008 Yr 11 Accelerated
Yearly
a) $\sin 2=0.91$
b) $75^{\circ} \Rightarrow \frac{5 \pi}{12}$
c) 1

$$
\begin{gathered}
d / d x\left(x^{3}+e^{3}\right) \\
=3 x^{2}
\end{gathered}
$$

ii)

$$
\begin{aligned}
& d / d x\left(x e^{3 x}\right) \\
& =e^{3 x}+x \cdot 3 e^{3 x} \\
& =e^{3 x}(1+3 x)
\end{aligned}
$$

iii).

$$
\begin{aligned}
& d / d x\left(\sin ^{3} x\right) \\
& =3 \sin ^{2} x \cos x
\end{aligned}
$$

iv)

$$
\begin{aligned}
& d / d x\left(\ln \frac{(x+1)^{3}}{x-1}\right) \\
= & d \mid d x(3 \ln (x+1)-\ln (x-1)) \\
= & \frac{3}{x+1}-\frac{1}{x-1} . \\
= & \frac{2(x-2)}{x^{2}-1}
\end{aligned}
$$

d) $i$

$$
\begin{aligned}
f\left(\frac{\pi}{6}\right) & =\tan \left(\frac{\pi}{6}\right) \\
& =\frac{1}{\sqrt{3}} \\
f^{\prime}(x) & =\sec ^{2} x \\
& =\frac{1}{\cos ^{2}\left(\frac{\pi}{6}\right)} \\
& =\left(\frac{2}{\sqrt{3}}\right)^{2} \\
& =\frac{4}{3} .
\end{aligned}
$$

e)

$$
\begin{aligned}
& \left(\frac{\sqrt{x}+1}{\sqrt{x}}\right)^{2}=\frac{(\sqrt{x}+1)^{2}}{x} \\
& =\frac{x+2 \sqrt{x}+1}{x} \\
& =1+\frac{2}{\sqrt{x}}+\frac{1}{x}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \int \frac{\sqrt{x}+1}{\sqrt{x}} d x \\
= & \int\left(1+\frac{2}{\sqrt{x}}+\frac{1}{x}\right) d x \\
= & x+4 \sqrt{x}+\ln x+C
\end{aligned}
$$

$$
\begin{array}{r}
f(1)=1+4 \sqrt{1}+\ln 1+c=5 \\
c=0
\end{array}
$$

$f(x)=x+4 \sqrt{x}+\ln x$.

Moil Acc $2 u$ Ye 10
Question 2
'a) $195+191+187+\cdots$
As: $a=195 \quad d=-4$
(i)

$$
\text { i) } \begin{aligned}
u_{n} & =a+(n-1) d \\
& =195-4(n-1) \\
& =195-4 n+4 \\
u_{n} & =199-4 n \quad[2]
\end{aligned}
$$

(iii)

$$
\begin{aligned}
199-4 n & <0 \\
199 & <4 n \\
n & >\frac{199}{4} \\
& >49.75
\end{aligned}
$$

$\therefore$ Istatem $<0$ is whew

$$
\begin{aligned}
n=50, u_{50} & =199-200 \\
& =-1[2]
\end{aligned}
$$

ii)

$$
\begin{aligned}
S_{n} & =\frac{n}{2}(2 a+(n-1) d) \\
S_{49} & =\frac{49}{2}(390-4(48)) \\
& =4851 \\
\text { OR } S_{n} & =\frac{n}{2}(a+l) \\
& =\frac{49}{2}(195+3) \\
& =4851
\end{aligned}
$$

[2]
(b) $2-6 x+18 x^{2}-54 x^{3}+\ldots$

45: $\quad a=2 \quad r=-3 x$
(i) 500 exists for $|r|<1$

$$
\begin{aligned}
i{ }_{v}|-3 x| & <1 \\
|x| & <\frac{1}{3} \quad[1]
\end{aligned}
$$

(ii) $S_{\infty}=\frac{a}{1-r}$

$$
\begin{aligned}
9 & =\frac{2}{1+3 x} \\
9+27 x & =2 \\
27 x & =-7 \\
x & =-\frac{7}{27} \quad[2]
\end{aligned}
$$

(iii)


$$
\begin{aligned}
& y=4-x^{2} \\
& x^{2}=4-y
\end{aligned}
$$

$$
\begin{align*}
V & =\pi \int_{0}^{4} \partial x^{2} d y \\
& =\pi \int_{0}^{4}(4-y) d y \\
& =\pi\left[4 y-\frac{y^{2}}{2}\right]_{0}^{4} \\
& =\pi[(16-8)-0] \\
& =8 \pi \tag{3}
\end{align*}
$$

Q2 (Conte)
(d)


Let the tangent meat the curve ot $P$, and the $x$-axis :- $(a, 0)$ and the $y$-axis in $(0, a)$. clearly $m=-1$

$$
\begin{aligned}
a r y m & =-1 \\
\frac{d y}{d x} & =-e^{-x} \\
\therefore-1 & =e^{-x} \\
1 & =e^{-x} \\
x & =0
\end{aligned}
$$

$\therefore$ Tat passes throe $(0,1)$

$$
\begin{aligned}
y-1 & =-1(x-0) \\
& =-x \\
x+y-1 & =0
\end{aligned}
$$

YRU AccergRaits
Qubstion 3
(a)

$$
\frac{d P}{d t}>0, \frac{d^{2} \rho}{d t^{2}}<0
$$


(b)

$$
\begin{aligned}
T_{n} & =S_{n}-S_{n-1} \\
\therefore T_{5} & =S_{5}-S_{4} \\
& =11 \times 5-5^{2}-\left(11 \times 4-4^{2}\right) \\
& =55-25-(44-16) \\
& =30-28 \\
& =2
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{0}^{5} 3(f(x)+2) d x & =3 \int_{0}^{5} f(x) d x+3 \int_{0}^{5} 2 d x \\
& =3 \times 3+3[2 x]_{0}^{5} \\
& =9+3[10-0] \\
& =39
\end{aligned}
$$

(e) (i)

$$
\begin{aligned}
& 3 t^{2}-18 t+24=0 \\
& 3\left(t^{2}-6 t+8\right)=0 \\
& 3(t-4)(t-2)=0 \\
& E=2,4 \\
& \therefore \text { at-ent aftr. } \\
& 2 \text { and } 4 \text { recs. }
\end{aligned}
$$

(11) $x=t^{3}-9 t^{2}+24 t+c$.
when $t=0, v=0 \therefore c=0$

$$
\therefore x=t^{3}-9 t^{2}+2 x t
$$

(III)


Sbistance travelled in friet 4 sees

$$
\begin{aligned}
D & =\int_{0}^{2}\left(3 t^{2}-18 t+24\right) d t+\left|\int_{2}^{4}\left(3 t^{2}-18 t+2 v\right) d t\right| \\
& =\left[t^{3}-9 t^{2}+24 t\right]_{0}^{2}+\left|\left[t^{3}-9 t^{2}+24 t\right]_{2}^{4}\right| \\
& =(8-36+48)+|64-144+96-(8-36+48)| \\
& =20+|16-20| \\
& =20+4 \\
D & =24 m ?
\end{aligned}
$$

(M) Nen $x=t\left(t^{2}-9 t+24\right)$

$$
\begin{aligned}
\text { Af } x=0 \quad t=0 \quad \text { or } t^{2}-9 t & +24=0 \\
\uparrow & \\
\Delta & =81-96 \\
& =-15 \\
\therefore & \text { No Roors. }
\end{aligned}
$$

Khence no!! $\left[\begin{array}{c}\therefore \text { no Roors } \\ \text { muat aren a } \\ \text { nearan }\end{array}\right]$


## 2008 Accelerated Mathematics Yearly:

## Solutions- Question 5

5. (a) The parabola $y=a x^{2}+b x+c$ passes through the points $(-1,2),(1,3)$ and $(3,9)$. Evaluate $\int_{-1}^{3}\left(a x^{2}+b x+c\right) d x$.

Solution: Using Simpson's rule, which is exact for quadratics-

$$
\begin{aligned}
& \quad \begin{array}{l|l|l|l}
x & -1 & 1 & 2 \\
\hline y & 2 & 3 & 9 \\
h & =2 . \\
\therefore \text { Integral } & =\frac{2}{3}(2+4 \times 3+9), \\
& =\frac{46}{3} \text { or } 151 / 3 .
\end{array} \\
& \quad
\end{aligned}
$$

Solution: Alternative method-

Sub. in (1): $2=5 / 8-1 / 2+c$,

$$
c=\frac{15}{8} .
$$

$$
I=\frac{1}{8} \int_{-1}^{3}\left(5 x^{2}+4 x+15\right) d x
$$

$$
=\frac{1}{8}\left[\frac{5 x^{3}}{3}+2 x^{2}+15 x\right]_{-1}^{3}
$$

$$
=\frac{1}{8}\left\{45+18+45-\left(\frac{-5}{3}+2-15\right)\right\},
$$

$$
=\frac{46}{3} \text { or } 15^{1 / 3} \text {. }
$$

$$
\begin{aligned}
& 2=a-b+c \\
& 3=a+b+c \\
& 9=9 a+3 b+c \\
& \text { (2) }-1 \text { ): } 1=2 b \text {, } \\
& b=1 / 2 . \\
& \text { (3) -2): } 6=8 a+1 \text {, } \\
& a=5 / 8 \text {. }
\end{aligned}
$$

(b) $A B$ is a diameter of a semicircle and the chord $A P$ makes an angle of $x$ radians with $A B$. If $A P$ divides the semicircle into two equal areas, prove that $2 x+$ $\sin 2 x=\frac{\pi}{2}$.
Solution: Area $I=\frac{r^{2} \theta}{2}-\frac{r^{2} \sin \theta}{2}$,

$$
\begin{aligned}
& =\frac{r^{2}}{2}((\pi-2 x)-\sin (\pi-2 x)) \\
& =\frac{r^{2}}{2}(\pi-2 x-\sin 2 x) \\
\text { i.e. } \frac{1}{2} \times \frac{\pi r^{2}}{2} & =\frac{r^{2}}{2}(\pi-2 x-\sin 2 x), \\
\frac{\pi}{2} & =\pi-2 x-\sin 2 x, \\
2 x+\sin 2 x & =\frac{\pi}{2} .
\end{aligned}
$$

Solution: Alternative method-

$$
\begin{aligned}
& \text { Area } \mathrm{I}=\frac{r^{2}}{2}(\pi-2 x)-\frac{r^{2}}{2} \sin (\pi-2 x) \\
& \text { Area } \mathrm{II}=\frac{r^{2}}{2} 2 x+\frac{r^{2}}{2} \sin (\pi-2 x)
\end{aligned}
$$

Equating areas,

$$
\begin{aligned}
2 x+\sin (\pi-2 x) & =\pi-2 x-\sin (\pi-2 x), \\
4 x+2 \sin 2 x & =\pi, \\
2 x+\sin 2 x & =\frac{\pi}{2} .
\end{aligned}
$$


(c) In the diagram, the sphere has a diameter of 10 cm . Also, the right circular cone has a height of 10 cm , and its base has a diameter of 10 cm . The sphere and cone sit on a horizontal surface. If a horizontal plane cuts both the sphere and the cone, the cross-sections will both be circles, as shown. Let the radii of the cross-sections of the cone and sphere at height $h$ be $r_{1}$ and $r_{2}$ respectively.

(i) Show that $r_{1}^{2}=\left(5-\frac{h}{2}\right)^{2}$ and $r_{2}^{2}=10 h-h^{2}$.

Solution:


$$
\begin{aligned}
\frac{r_{1}}{10-h} & =\frac{5}{10}=\frac{1}{2} \\
r_{1} & =5-h / 2 . \\
\therefore r_{1}^{2} & =(5-h / 2)^{2} .
\end{aligned}
$$



$$
\begin{aligned}
r_{2}^{2}+(5-h)^{2} & =25 \\
r_{2}^{2} & =25-25+10 h-h^{2} \\
& =10 h-h^{2}
\end{aligned}
$$

(ii) Hence, or otherwise, find the height of the horizontal plane that gives the greatest sum of the cross-sectional areas.

Solution: Area sum, $A=\pi r_{1}{ }^{2}+\pi r_{2}{ }^{2}$,

$$
\begin{aligned}
& =\pi\left((5-h / 2)^{2}+10 h-h^{2}\right) \\
& =\pi\left(25-5 h+\frac{h^{2}}{4}+10 h-h^{2}\right) \\
& =\pi\left(25+5 h-\frac{3 h^{2}}{4}\right) \\
& =\frac{\pi}{4}\left(100+20 h-3 h^{2}\right) . \\
\frac{d A}{d h} & =\frac{\pi}{4}(20-6 h), \\
& =0 \text { when } h=\frac{10}{3} . \\
\frac{d^{2} A}{d h^{2}} & =\frac{\pi}{4} \times-6, \\
& <0
\end{aligned}
$$

$\therefore$ The height is $10 / 3 \mathrm{~cm}$ for maximum area.

