SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

2011

Year 11 Yearly

Mathematics Accelerated

General Instruction Total Marks - 80
e Reading Time — 5 Minutes e Attempt questions 1-5.
e Working time — 90 Minutes

e Write using black or blue pen.
Pencil may be used for diagrams.

e Board approved calculators maybe
used.

e Start each NEW question in a
separate answer booklet.

e Marks may NOT be awarded for
messy or badly arranged work.

e All necessary working should be Examiner: J. Chen
shown in every question.

e Answer in simplest exact form
unless otherwise instructed.
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START A NEW ANSWER BOOKLET

QUESTION ONE [18 marks]

(a)
Q) Use the standard integrals to find,

f sec2x tan 2x .dx

(i)

fx -3 p

.dx
X

(iii)

ftanx.dx

(b) Evaluate

() .

j sin(e — x) .dx
(i)

fl(z +e%).dx
0

(c) Differentiate the following with respect to x,
Q) tan(sin x)

(“) ex+cosx

(d)

Q) Explain why ABCD is a parallelogram.
(i) If PQ are the midpoints of AD and BC respectively, explain

why AB||PQ||CD.
(iii))  Prove that OP = 0Q.

End of Question One

[5 marks]

[5 marks]

[3 marks]

[5 marks]
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START A NEW ANSWER BOOKLET

QU

ESTION TWO [13 marks]
(@) The graph below shows the derivative of the curve y = f(x).
g F 3

A J

Q) Explain why the curve y = f(x) has stationary points
atx =aandx = c.

(i)  What type of stationary point is at x = a and why?

(ii)  What type of stationary point is at x = ¢ and why?

(iv)  Sketch a possible graph of y = f(x).

(b)
Q) Differentiate xe*.
(i) Hence, evaluate

1
f xe* . dx
0

(c) Determine the value ofa+b + ¢ +d + e, giving reasons.

End of Question Two

[6 marks]

[4 marks]

[3 marks]
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START A NEW ANSWER BOOKLET

QUESTION THREE [17 marks]

(@) In the diagram, the shaded area A is 5 cm?, the shaded area B [1 mark]
is 8 cm?, the shaded area C is 7 cm? and the shaded area D is 6 cm?.
}rll
B y=fk)
D
s -3 0 3 6 X
A C
v
Find
6
f f(x).dx
-5
(b) In the diagram below, ABC is the sector of a circle with radius 2 cm, [6 marks]

~ CAB is 30° and AD = BD =1 cm.

C

NOT TO SCALE

30°
A 1 D 1 B

Q) Find the perimeter of the shaded region BCD correct to the
nearest 2 decimal places.
(i) Find the exact area of the shaded region BCD.
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(c) The diagram below shows Mr. Smith’s farm. All measurements are [2 marks]

in metres.

6.2

3.5 3.7
1.8

15 15 15 15

Use Simpson’s rule with 5 function values to approximate the area of
the farm.

(d) [4 marks]
Q) Find the coordinates of the points of intersection of the two
curvesy = x2 —2x + landy = 4x — x% — 3.
(i) Calculate the area contained by the two curves between the
points of intersection.

(e) The temperature of a cup of black coffee is given by T = 100e~t/> [4 marks]

where t is the time in minutes.

If it is too hot to drink above 55°C and too cold below 25°C.
Calculate the length of time during which the coffee is drinkable (to
the nearest second).

End of Question Three
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START A NEW ANSWER BOOKLET

QUESTION FOUR [16 marks]

(@) A particle moves along the x-axis. Initially it is at rest at the origin. [6 marks]
2
The graph shows the acceleration, ‘:ZT’; , of the particle as a function
of time ¢.
ﬂ F 3
dt?
2 :
3- y s
-0 > 4 6 8 t
—6- 5 >
L J

() Using Simpson’s rule, estimate the velocity of the particle
att = 4.

(i)  Write down the time at which the velocity of the particle is a
maximum.

(iii)  Estimate the time at which the particle is furthest from the
origin in the positive direction. Justify your answer.

(b) Consider the function f(x) = (x? — 4)(x? — 2). [10 marks]
Q) Find the x intercepts of the curve.
(i) Find the coordinates of the stationary points and determine
their nature.
(ili)  Find any points of inflexion.
(iv)  Sketch y = f(x), showing all critical points.
Q) Determine the values of x for which the function concaves
up.

End of Question Four
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START A NEW ANSWER BOOKLET

QUESTION FIVE [16 marks]

(@) A T-shirt company makes 500 shirts per month. At $30 each, they
can sell all the shirts. If the price of each shirt is increased by $3,
then this will result in a 5 shirt reduction in sales for each $3
increment. Also, the company has fixed costs of $6500 per month.

Q) Let the number of $3 increments be x, prove that the monthly
profit P, in dollars, is given by P = 8500 + 1350x — 15x?2.

(i) Find how many shirts would be sold and the price that should
be charged per shirt to ensure maximum monthly profit.

(b) Consider the function f(x) = ﬁ , forx > 1.

Q) Show that the function y = f(x) has a minimum point
atx = e.
(i) Hence, use (b) (i) to show that x¢ < e* for x > 1.

(c) The region bounded by the curve y = logs x, the line y = 2 and
the x and y axes, is rotated about the y axis.

Q) Show that the volume of the solid of revolution formed is
given by

2
V= nf 9Y . dy
0
(i) Hence evaluate the volume in exact simplified form.

End of Exam

[6 marks]

[5 marks]

[5 marks]
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1.

2011 Accelerated Mathematics Yearly:
Solutions— Question 1

(a) (i) Use the standard integrals to find

sec 2z tan 2z dz,

Solution: / sec 2 tan 2z dzr = % sec 2z + c.

(i) /w =3 i,

T

Solution: / (1 — %) dr=z—3lnz +c

(iti) /tan:cda:.

—singx

Solution: — f
COs T

dx = —Incosz + ¢ (or Insecx -+ c).

(b) Evaluate

(1) : sin{e — z) dz,

—e

&
Solution: / sin(e — z) dz

—€e

[ —~ cos(e — 3:)]2_8,

= 1 — cos2e.

(ii) fl (2+¢%) dz.

1
Solution: / (2+¢€*)de = [2z+ em];,
0

=2+e—{0+1),
= 1+e.

B

E



(c) Differentiate the following with respect to z:
(i) tan{sinz),

Solution: Put y = tanu,

/g = sec?u,
ay = dy X du

u = sinz,
dufge = cOS T,

d dx du dx?
i.e., E(tan(sinm)) = cos z sec*(sin z).

(11) e:c+cos z

d 1
Solution: _(jm (e:r+cos :c) — (1 + ~sin CE)GZTCOS m’
X

= (1 — sinz)e® ==,

7
L

(i) Explain why ABCD is a parallelogram.

Solution: Diagonals AC, BD bisect each other at O (data),
. ABCD is a parallelogram.

(i1} If P, @ are the midpoints of AD and BC respectively, explain why
AB || PQ | CD.

Solution: P is the midpoint of AD (data),
() is the midpoint of AC (AO = OC, given),
. PO || DC (midpoint theorem for AADC).

Similarly, PO {| AB (midpoint theorem for AADR).
SLAB PQ | DC.

(ili) Prove that OP = 0Q.

Solution: OP = 1DC (midpoint theorem for AADC)

0Q = ;DC (midpoint theorem for ABDC)
SLOP = 0Q.
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