

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2013

Year 11
 Accelerated Mathematics
 Yearly

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Start each NEW section in a separate answer booklet.
- Marks may NOT be awarded for messy or badly arranged work.
- A table of standard integrals is included.

Total Marks - 75

- All answers must be given in exact simplified form unless otherwise stated.
- All necessary working should be shown in every question.

Standard Integrals

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, \\
& \int \frac{1}{x} d x=\ln x, \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}, \\
& \int \cos a x d x=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \quad \ln x=\log _{e} x, \\
& n \neq-1 ; \quad x \neq 0, \quad \text { if } n<0 \\
& x>0 \\
& a \neq 0 \\
& x>a>0 \\
& x>0
\end{aligned}
$$

Section A (15 marks) Start a NEW booklet.
(a) Find the derivative of the following 3
(i) $e^{\tan x}$
(ii) $\quad x \ln (x+2)$
(iii) $\cos (2 x)^{\circ}$
(b) Find
(i) $\int \frac{8 d x}{1+4 x}$
(ii) $\int \frac{6}{\operatorname{cosec} x} d x$
(iii) $\int_{0}^{8} e^{\frac{x}{4}} d x$
$\begin{array}{lll}\text { (c) Find } x \text { if } & \text { (i) } e^{x}=3.14 & \mathbf{2} \\ & \text { (ii) } \ln x=1.67 \\ \text { (d) For } f(x)=\ln \frac{1+x}{1-x} & \mathbf{2}\end{array}$
(i) Show that $f(x)$ is an ODD function.
(ii) Find $f^{\prime}(x)$.
(e) A particle is moving on the x-axis. At time t its position x is given by $x=t+1+\frac{1}{1+t}, \quad x$ is in metres, t is in seconds.

Find (i) the initial position
(ii) the velocity at $t=2$.
(iii) the acceleration at time t.
(f) For what values of x is $f(x)=x^{3}+3 x^{2}+12 x-7$ decreasing?

Section B (15 marks) Start a NEW booklet.

(a) Write down an equation that best represents this sine function.

(b) (i) Show that the curves $y=9 x-6-x^{2}$ and $y=3 x^{2}-3 x-6$ intersect at $x=3$ and $x=0$.
(ii) Find the area between the two curves.
(c) Given that $4^{x}=e^{f(x)}$
(i) Find $f(x)$
(ii) Hence or otherwise find
(a) $\frac{d}{d x}\left(4^{x}\right)$
($\boldsymbol{\beta}) \quad \int 4^{x} d x$
(d) Find $f(x)$ if $f^{\prime}(x)=\frac{e^{1-x}}{2}$ and $f(2)=\frac{1}{2 e}$.
(e) The mass M in grams of a radioactive substance may be expressed as

$$
M=A e^{-k t}
$$

where t is in years and k is a constant.
(i) At time $t=0, M=10$, find A.
(ii) After 5 years the mass is 9 grams, find the mass after 20 years.
(f) Find $\int_{0}^{\frac{\pi}{4}} \frac{2}{1-\sin ^{2} \theta} d \theta$

Section C (17 marks) Start a NEW booklet.
(a) For a given function $f(x)$, it is known that $f(0)=3$ and $f(1)=15$. Find in

$$
\int_{0}^{1} \frac{f^{\prime}(x)}{f(x)} d x
$$

(b) The graph shows a function $f(x)$ for $0 \leq x \leq a$. It is known that the function is ODD and is stationary at $(0,0)$.

(i) Copy the graph and continue for $-a \leq x \leq 0$.
(ii) On a separate diagram, sketch $y=f^{\prime}(x)$.
(c) The velocity of a particle moving in a straight line is given by:

$$
v=1-2 \cos t \text { for } 0 \leq t \leq 2 \pi
$$

where v is measured in metres per second and t is measured in seconds.
(i) At what times in the interval $0 \leq t \leq 2 \pi$, is the particle at rest?
(ii) Sketch the graph of v against t for $0 \leq t \leq 2 \pi$.
(iii) What is the maximum velocity of the particle in the interval $0 \leq t \leq 2 \pi$?
(iv) Calculate the total distance travelled by the particle in the first π seconds.
(d) Solve $4^{1+x}=6^{x-1}$ (giving your answer correct to three significant figures)
(e) For $f(x)=x^{4}+4 x$ 3
(i) Find any stationary points and possible inflections.
(ii) Sketch the curve, showing essential features.

Section D (15 marks) Start a NEW booklet.

(a) $y=e^{\sqrt{x}}$ is rotated about the x axis between $x=0$ and $x=2$. Use Simpson's

Rule with three function values to find the volume generated (answer correct to 3 significant figures).
(b) Given $f(x)=e^{2 x^{2}}$, find
(i) $f^{\prime}(1)$.
(ii) $f^{\prime \prime}(-1)$.
(c) A rainwater tank with a volume of $9 \mathrm{~m}^{3}$ is installed in a house at $8 \mathrm{a} . \mathrm{m}$. Rain begins to fall and flows into the empty tank at a rate given by:

$$
\frac{d V}{d t}=\frac{36 t}{t^{2}+20}
$$

where t is the time in hours and V is the volume in cubic metres. At 8 a.m., $t=0$.
(i) Show that the volume of the water in the tank at time t, is given by:

$$
V=18 \ln \left(\frac{t^{2}+20}{20}\right), t>0
$$

(ii) Find the time when the tank will be completely full with water (to the nearest minute).
(iii) Later, when the tank is full and the rain has stopped, the owner turns on the pump which pumps the water out at a rate given by

$$
\frac{d V}{d t}=\frac{t^{2}}{k}
$$

The pump continues for 5 hours until the tank is empty. Find the value of k.
(d) (i) Find the minimum value of $x+900 x^{-1}$ where $x>0$, giving reasons.
(ii) A company runs a ship between ports A and B, d kilometres apart. The ship maintains a constant speed of v kilometres per hour. For a given v, the cost per hour of running the ship is $\$\left(9000+10 v^{2}\right)$, find the value of v which minimises the cost of the trip.

Section E (13 marks) Start a NEW booklet.
(a) A horizontal line $y=a, a>1$ is drawn to cross the two graphs $y=e^{x}$ and $y=\frac{1}{2} e^{x}$ at points C and D. Show that the distance $C D$ is constant (i.e. independent of where it is drawn).
(b) A sheep grazing in a paddock is tethered to a stake by a rope 30 m long. If the stake is 15 m from a long fence, find the area to the nearest square metre, over which the sheep can graze.
(c) Given $f(x)=\sin x+\sin ^{2} x$.
(i) Show that $f(x)$ has stationary points when $\cos x=0$ or $\sin x=-\frac{1}{2}$.
(ii) Find the co-ordinates of the stationary points for $0 \leq x \leq 2 \pi$.
(iii) Sketch $y=f(x)$ for $0 \leq x \leq 2 \pi$.

YR II ACCELERATED YEARLY.
a) i) $d / d x\left(e^{\tan x}\right)=\sec ^{2} x e^{\tan x}$
ii)

$$
\begin{aligned}
& d / d x(x \ln (x+2))=d / d x(u \cdot v) \\
& \begin{aligned}
& u=x \quad v=\ln (x+2) \\
& u^{\prime}=1 \quad v^{\prime}=\frac{1}{x+2} \\
&=v u^{\prime}+u v^{\prime} \\
&=\ln (x+2)+\frac{x}{x+2}
\end{aligned}
\end{aligned}
$$

iii)

$$
\begin{aligned}
& \cos 2 x^{\circ}=\cos 2 x \times \frac{\pi}{180} \\
& \text { d } / d x\left(\cos \frac{2 \pi x}{180}\right)=-\frac{\pi}{90} \sin \left(\frac{\pi x}{90}\right)
\end{aligned}
$$

b)

$$
\text { i) } \begin{aligned}
\int \frac{8}{1+4 x} \cdot d x & =2 \int \frac{4}{1+4 x} \cdot d x \\
& =2 \ln (1+4 x)+C
\end{aligned}
$$

11)

$$
\begin{aligned}
\int \frac{6}{\operatorname{cosec} x} d x & =6 \int \sin x \cdot d x \\
& =-b \cos x+c
\end{aligned}
$$

iii)

$$
\begin{aligned}
\int_{0}^{8} e^{x / 4} \cdot d x & =\left[4 e^{x / 4}\right]_{0}^{8} \\
& =4 e^{2}-4 e^{0} \\
& =4\left(e^{2}-1\right)
\end{aligned}
$$

i)

$$
\begin{aligned}
e^{x} & =3.14 \\
\ln e^{x} & =\ln 3.14 \\
x & =\ln 3.14
\end{aligned}
$$

ii)

$$
\begin{aligned}
\ln x & =1.67 \\
e^{\ln x} & =e^{1.67} \\
x & =e^{1.67}
\end{aligned}
$$

d) i)

$$
\begin{aligned}
f(-x) & =\ln \left(\frac{1-x}{1+x}\right) \\
& =\ln (1-x)-\ln (1+x) \\
& =-(\ln (x+1)-\ln (1-x)) \\
& =-\ln \left(\frac{x+1}{x-1}\right) \\
& =-f(x)
\end{aligned}
$$

$\therefore f(x)$ is odd.
ii)

$$
\begin{aligned}
f^{\prime}(x) & =f^{\prime}(\ln (1+x)-\ln (1-x)) \\
& =\frac{1}{x+1}-\frac{-1}{1-x} \\
& =\frac{1-x+(x+1)}{x} \\
& =\frac{2}{1-x^{2}}
\end{aligned}
$$

e) $x=t+1+\frac{1}{1+t}$.
i) $t=0 \quad x=1+\frac{1}{1}=2$ to the right.
ii)

$$
\begin{aligned}
& v=\frac{d x}{d t}=1-\frac{1}{(1+t)^{2}} \\
& t=2 \quad v=1-\frac{1}{3^{2}}=\frac{8}{9} \mathrm{~ms}^{-1} .
\end{aligned}
$$

iii) $\quad \ddot{\circ}=\frac{d v}{d t}=\frac{+2}{(1+t)^{3}}$.
f) $y=x^{3}+3 x^{2}+12 x-7$.

$$
y^{\prime}=3 x^{2}+6 x+12
$$

decreasing when $y^{\prime}<0$.

$$
\begin{aligned}
& y^{\prime}=3\left(x^{2}+2 x+4\right) \leqslant 0 \\
& \left(x^{2}+2 x+1\right)+3 \leqslant 0 \\
& (x+1)^{2}+3 \leqslant 0
\end{aligned}
$$

which has no solutions.
\therefore there are no values for x for. which y is decreasing.
y is an increasing f_{n}.

Year 11 yearly
Section B
(a) $y=4 \sin \frac{1}{3} x \quad(2) \quad T=6 \pi=\frac{2 \pi}{n}$
(b) (i) $y=9 x-6-x^{2}$ (1) and $y=3 x^{2}-3 x-6$

$$
\text { Sub(1) in(2) } \left.\Rightarrow \quad 3 x^{2}-3 x-6=9 x-6-x^{2}\right) \text { 4x } \begin{align*}
& 4 x^{2}-12 x=0 \tag{2}\\
& 4 x(x-3)=0
\end{align*}
$$

$x=0$ or $x=3$ are Pt of intereach
(ii)

(c) $\quad 4^{x}=e^{f(x)}$
(i) $\ln 4^{x}=\ln e^{f(x)}$

$$
x(\ln 4)=f(x)
$$

(ii) $(\alpha) \frac{d}{d x}\left(4^{x}\right)=(\ln 4) 4^{x}$
(β) $\int 4^{x} d x=\frac{4^{x}}{\ln 4}+c$
(d)

$$
\begin{aligned}
& f^{\prime}(x)=\frac{1}{2} e^{1-x} \\
& f(x)=\frac{1}{2} \frac{e^{1-x}+c}{-1}+ \\
& f(x)=-\frac{1}{2} e^{1-x}+c
\end{aligned}
$$

$$
\begin{align*}
A \operatorname{lso} f(2)=\frac{1}{2 e} \Rightarrow \frac{1}{2 e} & =-\frac{1}{2} e^{-1}+c \\
\frac{1}{2 e} & =-\frac{1}{2 e}+c \tag{2}\\
c & =\frac{1}{e}
\end{align*}
$$

$$
\therefore f(x)=-\frac{1}{2} e^{1-x}+\frac{1}{e}
$$

(e) $\quad M=A e^{-k t}$
(i). Wher $t=0, m=10 \Rightarrow 10=A e^{0}$

$$
\Rightarrow A=10
$$

(ii) $\quad \therefore \quad \eta=10 e^{-k t}$

$$
\begin{aligned}
t=5, m=9 \Rightarrow 9 & =10 e^{-5 k} \\
0.9 & =e^{-5 k} \\
\ln 0.9 & =-5 k \\
k & =\frac{\ln 0.9}{-5}=0.0210721
\end{aligned}
$$

Then $M=10 e^{\left(\frac{\operatorname{mn} 0.9)}{5}\right) t}$

$$
\text { When } t=20, \quad \begin{aligned}
m & =10 e^{4 \ln 0.9} \\
M & =6.561 \mathrm{~g}
\end{aligned}
$$

(f)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \frac{2}{1-\sin ^{2} \theta} d \theta \\
= & \int_{0}^{\pi / 4} 2 \sec ^{2} \theta d \theta \\
= & {[2 \tan \theta]_{0}^{\pi / 4} } \\
= & (2)-(0) \\
= & 2 \text { square units. }
\end{aligned}
$$

Section C
a)

$$
\begin{aligned}
& \int_{0}^{1} \frac{f^{\prime}(x)}{f(x)} d x \\
= & {[\ln f(x)]_{0}^{1} } \\
= & \ln f(1)-\ln f(0) \\
= & \ln 15-\ln 3 \\
= & \ln \left(\frac{15}{3}\right) \\
= & \ln 5
\end{aligned}
$$

b)

c) $\quad V=1-2 \cos t \quad 0 \leqslant t \leq 2 \pi$
i) let $v=0$

$$
1-2 \cos t=0
$$

$$
\cos t=\frac{1}{2}
$$

$$
\cos \alpha=\frac{1}{2}
$$

$$
\alpha=\frac{\pi}{3}
$$

$$
t=\frac{\pi}{3}, 5 \frac{\pi}{3} \quad s
$$

ii)

iii) $3 \mathrm{~m} / \mathrm{s}$ (as seen from graph)
iv) distance travelled $=-\int_{0}^{\frac{\pi}{3}} v d t+\int_{\pi}^{\pi} v d t$

$$
\begin{aligned}
& =-\int_{0}^{\frac{\pi}{3}}(1-2 \cos t) d t+\int_{\frac{\pi}{3}}^{\pi}(1-2 \cos t) d t \\
& =-[t-2 \sin t]_{0}^{\frac{\pi}{3}}+[t-2 \sin t]_{\frac{\pi}{3}}^{\pi} \\
& =-\left[\frac{\pi}{3}-2 \sin \frac{\pi}{3}-(0)\right]+\left[\pi-2 \sin / \pi-\left(\frac{\pi}{3}-2 \sin \frac{\pi}{3}\right)\right] \\
& =-\left[\frac{\pi}{3}-2\left(\frac{\sqrt{3}}{2}\right)\right]+\pi-\left(\frac{\pi}{3}-2\left(\frac{\sqrt{3}}{2}\right)\right) \\
& =\left(\frac{\pi}{3}+2 \sqrt{3}\right) m .
\end{aligned}
$$

d)

$$
\begin{gathered}
4^{1+x}=6^{x-1} \\
\ln 4^{1+x}=\ln 6^{x-1} \\
(1+x) \ln 4=(x-1) \ln 6 \\
\ln 4+x \ln 4=x \ln 6-\ln 6 \\
x \ln 6-x \ln 4=\ln 6+\ln 4 \\
x(\ln 6-\ln 4)=\ln 6+\ln 4 \\
x=\frac{\ln 6+\ln 4}{\ln 6-\ln 4} \\
x \approx 7.84
\end{gathered}
$$

e) i)

$$
\begin{aligned}
& f(x)=x^{4}+4 x \\
& f^{\prime}(x)=4 x^{3}+4 \\
& f^{\prime \prime}(x)=12 x^{2}
\end{aligned}
$$

For stationary points $f^{\prime}(x)=0$

$$
\begin{gathered}
4 x^{3}+4=0 \\
4\left(x^{3}+1\right)=0 \\
x^{3}=-1 \\
x=-1 \\
f(-1)=(-1)^{4}+4(-1) \\
=-3
\end{gathered}
$$

For possible inflexion paints $f^{\prime \prime}(x)=0$

$$
\begin{array}{r}
12 x^{2}=0 \\
x=0 \\
f(0)=0
\end{array}
$$

- stationary point at $(-1,-3)$
possible inflexion point at $(0,0)$

Note: $\quad f^{\prime \prime}(x)=12 x^{2}$

$$
\rightarrow 0, \text { for } x \neq 0
$$

$\therefore(-1,-3)$ is a minimum turning point $(0,0)$ is not an inflexion point.
ii)

For x-intercepts
let $f(x)=0$

$$
\begin{aligned}
& x^{4}+4 x=0 \\
& x\left(x^{3}+4\right)=0 \\
& x=0, x^{3} \\
& x=-4 \\
& x=-\sqrt[3]{4} .
\end{aligned}
$$

Section D
(a)

$$
\begin{aligned}
& y=e^{\sqrt{x}} \\
& \pi \int_{0}^{2} e^{2 \sqrt{x}} d x \\
& \approx \frac{\pi}{3}\left(1+4\left(e^{2}\right)+e^{2 \sqrt{2}}\right) 3 \\
& =49.7 \text { umits }^{3}
\end{aligned}
$$

(b) $f(x)=e^{2 x}$
(i)

$$
\begin{aligned}
& f^{\prime}(x)=4 x e^{2 x^{2}} \\
& f^{\prime}(1)=4 e^{2} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f^{\prime \prime}(x) & =4 x e^{2 x^{2}} \times 4 x+4 e^{2 x^{2}} \\
& =4 e^{2 x^{2}}\left(4 x^{2}+1\right) \\
f^{\prime \prime}(-1) & =4 e^{2}(5) \\
& =20 e^{2}
\end{aligned}
$$

(C)

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{36 t}{t^{2}+20} \\
& =18 \frac{2 t}{t^{2}+20}
\end{aligned}
$$

$$
V=18 \ln \left(t^{2}+20\right)+C
$$

when $t=0 \quad V=0$.

$$
\begin{aligned}
& 0=18 \ln (20)+c . \\
& c=-18 \ln (20)
\end{aligned}
$$

So

$$
\begin{align*}
& V=18 \ln \left(t^{2}+20\right)-18 \ln (20) \\
& V=18 \ln \left(\frac{t^{2}+20}{20}\right)
\end{align*}
$$

(ii) Find t when $V=9$

$$
\begin{aligned}
& 9=18 \ln \left(\frac{t^{2}+20}{20}\right) \\
& \frac{t^{2}+20}{20}=e^{\frac{1}{2}} \\
& t^{2}+20=20 e^{\frac{1}{2}} \\
& t= \pm \sqrt{20 e^{\frac{1}{2}-20}} \\
& t=3 \mathrm{hr} 36 \mathrm{ming} . \quad \text { sine } t 70 \\
& 11: 36 \mathrm{am} .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \frac{d v}{d t}=\frac{t^{2}}{k} \\
& v=\frac{t^{3}}{3 k}+C
\end{aligned}
$$

when $t=0 \quad v=9$.

$$
\begin{aligned}
& q=C . \\
& \delta o \\
& V=\frac{t^{3}}{3 k}+9
\end{aligned}
$$

Findk Wher $v=0, t=5$.

$$
\begin{aligned}
0 & =\frac{5^{3}}{3 k}+9 \\
\frac{5^{3}}{3 k} & =-9 \\
5^{3} & =-3^{3} k \\
k & =-\left(\frac{5}{3}\right)^{3} \\
& =-\frac{125}{27}
\end{aligned}
$$

(d) (i)

Let $f(x)=x+900 x^{-1}$

$$
\begin{aligned}
& f^{\prime}(x)=1-900 x^{-2} \\
& f^{\prime \prime}(x)=\frac{1800}{x^{3}}
\end{aligned}
$$

Stat pts $f^{\prime}(x)=0$.

$$
\begin{aligned}
& 1=\frac{900}{x^{2}} \\
& x= \pm 30 . \quad x>0
\end{aligned}
$$

so $x=30$.
Nature

$$
f^{\prime \prime}(30)=\frac{1800}{30^{3}}>0 \text { miraines }
$$

\therefore minion value is $f(30)=60$.
(ii)

Cost $=($ Cost pr hour $) \times$ (hours).

$$
\begin{aligned}
& S=\frac{D}{T} \\
& T=\frac{D}{S}=\frac{d}{v} \text { hour } \\
& C(v)=\left(9000+10 v^{2}\right)\left(\frac{d}{v}\right) \\
&=\frac{9000 d}{v}+10 d v
\end{aligned}
$$

$$
\begin{aligned}
& C^{\prime}(v)=-\frac{9000 d}{v^{2}}+10 d . \\
& C^{\prime \prime}(v)=\frac{18000 d}{v^{3}}
\end{aligned}
$$

Stat pf $c^{\prime}(v)=0$.

$$
\begin{aligned}
& 10 d=\frac{9000 d}{U^{2}} \\
& V= \pm 30 . \quad V>0
\end{aligned}
$$

$$
2
$$

so $V=30$.
Nature

$$
c^{\prime \prime}(30)=\frac{2}{3}>0 \text { minima. }
$$

$30 \mathrm{~km} / \mathrm{h}$.

SECTION E
a)

$$
\begin{aligned}
y=e^{x} \Rightarrow & x=\ln y \\
& =\cos a \operatorname{at} y=a \\
x y=e^{x} \Rightarrow & x=\sin 2 y \\
& =\ln 2 a \operatorname{at} y=a
\end{aligned}
$$

Hence $A C=42 a-\ln a$

$$
=\ln 20
$$

Which is enoletendent of a.
G)
i)

$$
=\ln 2
$$

$$
\begin{aligned}
& \cos \theta=\frac{1}{2}, \theta=\frac{\pi}{3} \\
& 2 \theta=\frac{2 \pi}{3}, r=30
\end{aligned}
$$

Area conusts of
Curch - Segment

$$
\begin{aligned}
A & =\pi r^{2}-\left(\frac{1}{2} r^{2} 2 \theta-\frac{1}{2} r^{2} \operatorname{sen} L \theta\right) \\
& =900 \pi-\left(\frac{1}{2} \times 900 \times 2 \frac{\pi}{3}-\frac{1}{2} \times 900 \frac{\sqrt{3}}{2}\right) \\
& =900 \pi-300 \pi+225 \sqrt{3} \\
& 600 \pi+225 \sqrt{3} \\
& =22 ? 5 m^{2}
\end{aligned}
$$

c)

$$
=\sin x+\sin ^{2} x, 0 \leqslant x \leqslant 2 \pi
$$

$$
=\operatorname{sen} x(1+\operatorname{sen} x)
$$

$f(x)=0$ when $\operatorname{sen} x=0$
se $x=0, \pi, 2 \pi$
$f(x)=0$ when $\sin x=-1$ ie $x=\frac{3 \pi}{2}$

$$
\begin{aligned}
& f^{\prime}(x)= \cos x+2 \sin x \cos x \\
&= \cos x(1+2 \sin x) \\
& f^{\prime}(x)=0 \text { when } \cos x=0 \\
& \operatorname{anc} x=-1 / 2
\end{aligned}
$$

$\left\{\begin{array}{l}\text { ii) } \\ w\end{array}\right.$
if $\cos x=0 \quad x=\frac{\pi}{2}, \frac{3 \pi}{2}$
When $x=\frac{\pi}{2} \quad f(x)=2$
When $x=\frac{3}{2}, f(x)=0$
If $\operatorname{sen} x=-1 / 2, x=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
When $x=\frac{7 \pi}{6}, f(x)=-\frac{1}{4}$
When $x=\frac{i 1 \pi}{6} \quad f(x)=-\frac{1}{4}$
The FOUR stationary points are $\left(\frac{\pi}{2}, 2\right)\left(\frac{3 \pi}{2}, 0\right)$

$$
\left(\frac{7 \pi}{6},-\frac{1}{4}\right)\left(\frac{11 \pi}{6},-\frac{1}{4}\right)
$$

Now

$$
\begin{aligned}
f^{\prime}(x) & =-\operatorname{sen} x+2\left(-\sin ^{2} x+\cos ^{2} x\right) \\
& =-\operatorname{sen} x+2\left(1-2 \sin ^{2} x\right) \\
& =2-\sin x-4 \sin ^{2} x
\end{aligned}
$$

when $x=\frac{\pi}{2}, f^{\prime \prime}(x)=2-1-4=-3$ MAX When $x=\frac{3 \pi}{2}, f^{\prime \prime}(x)=2+1-4=-1 \mathrm{~ms}$
When $x=\frac{7 \pi}{6}, f^{\prime \prime}(x)=2+\frac{1}{2}-1=1 / \frac{1}{2}$ Min
When $x=\frac{11 \pi T}{6}, f^{\prime \prime}(x)=2+\frac{1}{2}-1=11 / 2 H 11$

