

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2013

Year 11 Accelerated Mathematics Yearly

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators may be used.
- Start each **NEW** section in a separate answer booklet.
- Marks may **NOT** be awarded for messy or badly arranged work.
- A table of standard integrals is included.

Total Marks – 75

- All answers must be given in exact simplified form unless otherwise stated.
- All necessary working should be shown in every question.

Examiner: *P. Bigelow*

Standard Integrals

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \qquad n \neq -1; \ x \neq 0, \qquad \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \qquad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \qquad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \qquad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \qquad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \qquad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \qquad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \qquad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \qquad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \qquad a > 0, \qquad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2}\right), \qquad x > 0$$
NOTE:
$$\ln x = \log_e x, \qquad x > 0$$

Section A (15 marks) Start a **NEW** booklet.

3

2

(iii) $\cos(2x)^\circ$

(b) Find (i)
$$\int \frac{8 \, dx}{1 + 4x}$$
 3

(ii)
$$\int \frac{6}{\csc x} dx$$

(iii)
$$\int_0^8 e^{\frac{x}{4}} dx$$

(c) Find x if (i)
$$e^x = 3.14$$

(ii)
$$\ln x = 1.67$$

(d) For
$$f(x) = \ln \frac{1+x}{1-x}$$
 2

(i) Show that f(x) is an ODD function.

(ii) Find f'(x).

(e) A particle is moving on the *x* –axis. At time *t* its position *x* is given by $x = t + 1 + \frac{1}{1+t}$, *x* is in metres, *t* is in seconds.

3

- Find **(i)** the initial position
 - (ii) the velocity at t = 2.
 - (iii) the acceleration at time *t*.
- (f) For what values of x is $f(x) = x^3 + 3x^2 + 12x 7$ decreasing?

Section B (15 marks) Start a **NEW** booklet.

(a) Write down an equation that best represents this sine function.

(b) (i) Show that the curves $y = 9x - 6 - x^2$ and $y = 3x^2 - 3x - 6$ intersect at **3** x = 3 and x = 0.

- (ii) Find the area between the two curves.
- (c) Given that $4^x = e^{f(x)}$

- (i) Find f(x)
- (ii) Hence or otherwise find

$$(\boldsymbol{\alpha}) \quad \frac{d}{dx} (4^x)$$
$$(\boldsymbol{\beta}) \quad \int 4^x \, dx$$

(d) Find
$$f(x)$$
 if $f'(x) = \frac{e^{1-x}}{2}$ and $f(2) = \frac{1}{2e}$.

- (e) The mass *M* in grams of a radioactive substance may be expressed as $M = Ae^{-kt}$ where *t* is in years and *k* is a constant.
 - (i) At time t = 0, M = 10, find A.
 - (ii) After 5 years the mass is 9 grams, find the mass after 20 years.

(f) Find
$$\int_0^{\frac{\pi}{4}} \frac{2}{1-\sin^2\theta} d\theta$$

2

Section C (17 marks) Start a NEW booklet.

(a) For a given function f(x), it is known that f(0) = 3 and f(1) = 15. Find in 2 simplest exact form, the value of

$$\int_0^1 \frac{f'(x)}{f(x)} \, dx$$

(b) The graph shows a function f(x) for $0 \le x \le a$. It is known that the function is **4** ODD and is stationary at (0,0).

- (i) Copy the graph and continue for $-a \le x \le 0$.
- (ii) On a separate diagram, sketch y = f'(x).

(c) The velocity of a particle moving in a straight line is given by:

$$v = 1 - 2\cos t \text{ for } 0 \le t \le 2\pi.$$

6

where v is measured in metres per second and t is measured in seconds.

(i) At what times in the interval $0 \le t \le 2\pi$, is the particle at rest?

- (ii) Sketch the graph of *v* against *t* for $0 \le t \le 2\pi$.
- (iii) What is the maximum velocity of the particle in the interval $0 \le t \le 2\pi$?
- (iv) Calculate the total distance travelled by the particle in the first π seconds.

(d) Solve $4^{1+x} = 6^{x-1}$ (giving your answer correct to three significant figures)

(e) For $f(x) = x^4 + 4x$

- (i) Find any stationary points and possible inflections.
- (ii) Sketch the curve, showing essential features.

Section D (15 marks) Start a NEW booklet.

(a) $y = e^{\sqrt{x}}$ is rotated about the *x* axis between x = 0 and x = 2. Use Simpson's Rule with three function values to find the volume generated (answer correct to 3 significant figures). 3

2

(b) Given
$$f(x) = e^{2x^2}$$
, find

(i) f'(1).

(c) A rainwater tank with a volume of $9 m^3$ is installed in a house at 8 a.m. Rain 7 begins to fall and flows into the empty tank at a rate given by:

$$\frac{dV}{dt} = \frac{36t}{t^2 + 20}$$

where *t* is the time in hours and *V* is the volume in cubic metres. At 8 *a*. *m*., t = 0.

(i) Show that the volume of the water in the tank at time *t*, is given by:

$$V = 18 \ln\left(\frac{t^2 + 20}{20}\right), \ t > 0.$$

- (ii) Find the time when the tank will be completely full with water (to the nearest minute).
- (iii) Later, when the tank is full and the rain has stopped, the owner turns on the pump which pumps the water out at a rate given by

$$\frac{dV}{dt} = \frac{t^2}{k}$$

The pump continues for 5 hours until the tank is empty. Find the value of *k*.

- (d) (i) Find the minimum value of $x + 900x^{-1}$ where x > 0, giving reasons.
 - (ii) A company runs a ship between ports *A* and *B*, *d* kilometres apart. The ship maintains a constant speed of *v* kilometres per hour. For a given *v*, the cost per hour of running the ship is $(9000 + 10v^2)$, find the value of *v* which minimises the cost of the trip.

Section E (13 marks) Start a NEW booklet.

- (a) A horizontal line y = a, a > 1 is drawn to cross the two graphs $y = e^x$ and $y = \frac{1}{2}e^x$ at points *C* and *D*. Show that the distance *CD* is constant (i.e. independent of where it is drawn).
- (b) A sheep grazing in a paddock is tethered to a stake by a rope 30 *m* long. If the stake is 15 m from a long fence, find the area to the nearest square metre, over which the sheep can graze.

6

- (c) Given $f(x) = \sin x + \sin^2 x$.
 - (i) Show that f(x) has stationary points when $\cos x = 0$ or $\sin x = -\frac{1}{2}$.
 - (ii) Find the co-ordinates of the stationary points for $0 \le x \le 2\pi$.
 - (iii) Sketch y = f(x) for $0 \le x \le 2\pi$.

End of Exam

YR II ACCELERATED YEARLY. a)i) d/dx (e^{tanx}) = sec² e e^{tanx} ii) $d/dx(x \ln (x+2)) = d/dx(u \cdot v)$ u=x V=ln(x+2)u=l V'=1x + a $= \sqrt{u^{1} + u^{1}}$ $= \ln(x+2) + x$ x+a $\cos 2x^{\circ} = \cos 2x \times \overline{11}$ m) $\frac{d}{dx}\left(\cos\frac{2\pi x}{180}\right) = -\overline{11} \sin\left(\frac{11x}{90}\right)$ $\frac{i)\left(\frac{2}{1+4x}, dx = 2\int \frac{4}{1+4x}, dx = 2$ $= 2 \ln(1+4x) + C$. $b dx = b \int sin x dx$. 11) $= - b \cos x + C$. 111) $\int_{0}^{8} e^{x/4} dx = \left[4e^{x/4}\right]_{0}^{8}$ $= 4e^{2} - 4e^{0}$ $= 4(e^{2} - 1)$

 $e^{x} = 3.14$. <u>i)</u> $\ln e^{\chi} = \ln 3.14$ $x = \ln 3.14$. ii) $\ln x = 1.67$. $e^{\ln x} = e^{1.67}$. x=e1.67. d) i) $f(-x) = \ln\left(\frac{1-x}{1+x}\right)$ $= \ln(1-x) - \ln(1+x)$ $= -(\ln(x+i) - \ln(i-x))$ $-\ln\left(\frac{x+L}{x-1}\right)$ = = -f(x) $\hat{f}(x)$ is add ii) $f'(x) = f'(\ln(1+x) - \ln(1-x))$ = $\frac{-1}{1-x}$ x+1 $\frac{1-x+(x+1)}{2}$ = $\frac{2}{1-x^{2}}$

e) x = t + 1 + 11 + t. i) t=0 x=1+-1=2 to the right. V = dx = 1 - 1 $dt = (1+t)^2$ ii) t=2 V=1-1=8 ms⁻¹. $\frac{11}{2} = \frac{dv}{dt} = \frac{+2}{(1+t)^3}.$ f) $y = x^3 + 3x^2 + 12x - 7$. $y^{1} = 3x^{2} + bx + 12$. decreasing when y1<0. $y' = 3(x^2 + 2x + 4) \leq 0.$ $(x^2+2x+1)+3 \le 0$ $(x+1)^2 + 3 \leq 0$. which has no solutions. object there are no values for x for. y is increasing fn.

Year 11 Yearly Section B T = 6TT = TT4sin 3 2 $(a) \quad y =$ (b) (i) $y = 9x - 6 - x^2$ () and $y = 3x^2 - 3x - 6$ (2) Sub() in(2) => $3x^2 - 3x - 6 = 9x - 6 - x^2$ $43c^2 - 12x$ $\frac{4\pi(x-3)=0}{x=0 \text{ or } x=3 \text{ are Pts of intersect.}}$ (0,-6) and (3,12) ù $Area = (92-6-x^2) - (3x^2-3x-6)c$ D $= \left(\frac{12x - 4x^2}{12x - 4x^2} \right) dor$ $6x^2 - \frac{4x^3}{3} \int_0^{10}$ = (54 - 36) - (0)= 18 sq. units $4^{\prime} = e^{f(x)}$ <u>| c</u> $ln 4^{\chi} = ln e^{f(u)}$ (i)____ $\chi(ln 4) = f(x)$ $(ii) (\alpha) \frac{d}{dx} (4^{36}) = (ln 4) 4^{26}$ $(\beta) \int 4^{2t} ds t = \frac{4^{2t}}{4n4} + c$

 $(d) \quad f(x) = \frac{1}{2}e^{-x}$ $f(x) = \frac{1}{2} \frac{e}{e} + c$ $f(x) = -\frac{1}{2}e^{1-x} + C$ $A | so f(2) = \frac{1}{2e} = \frac{1}{2e} = \frac{1}{2e} + C$ $\frac{1}{2e} = \frac{1}{2e} + ($ C=E $) = -\frac{1}{2}e^{1-x} + \frac{1}{2}e^{1-x}$ $M = Ae^{-kt}$ le When t=0, M=10 => 10 = A 1. M=10e-kt $t=5, m=q \Rightarrow q=10e^{-5k}$ $0.9 = e^{-5k}$ $\ln 0.9 = -5k$ $k = \frac{\ln 0.9}{-5} = 0.0210721$ Then $M = 10e^{(m_0, q)t}$ When t = 20, $m = 10e^{4m0.9}$, M = 6.561g.

1-em20 da $= \left(\frac{y_{4}}{2 \sec^2 \theta} \right) d$ 2 tan 0 1 14 ---- $\left(2\right) - \left(0\right)$ = = 2 square units.

 $V = 1 - 2 \cos t$ $0 \le t \le 2\pi$ (ے let v= 0 i١ $1-2\cos t=0$ $cost = \frac{1}{2}$ cosa=1 x = T $t = \frac{\pi}{3}, \frac{5\pi}{2}$ S <u>ìi</u> V=1-2cost π K v= -2 cost iii) 3 m/s (as seen from graph) distance travelled = - j 3 volt + j volt <u>iv)</u> $= - \int_{-\infty}^{\pi} (1 - 2\cos t) dt + \int_{-\infty}^{\pi} (1 - 2\cos t) dt$ t-2sint]^T t - 2sint]^T t - 2sint] $= -\left[\frac{\pi}{3} - 2sn\pi\right] - (0) + \left[\pi - 2sn\pi\right] - \left(\frac{\pi}{3} - 2sn\pi\right]$ $\left[\frac{\pi}{3} - 2\left(\frac{\sqrt{3}}{3}\right)\right] + \pi - \left(\frac{\pi}{3} - 2\left(\frac{\sqrt{3}}{2}\right)\right)$ $\frac{\pi}{2} + 2 - \sqrt{3} - m$

d) $4^{1+x} = 6^{x-1}$ $\frac{1}{\ln 4} = \ln 6$ $(1+x)\ln 4 = (x-1)\ln 6$ $\ln 4 + \pi \ln 4 = \pi \ln 6 - \ln 6$ $x\ln 6 - x\ln 4 = \ln 6 + \ln 4$ x(1nb-1n4) = 1n671n4n = ln 6 + ln 4ln6 - ln4n≈7.84 e) i) $f(x) = x^4 + 4x$ $f'(x) = 4x^3 + 4$ $f''(n) = 12n^2$ For stationary points f'/2)=0 $4x^{3} + 4 = 0$ $4(x^{3} + 1) = 0$ $x^{3} = -1$ x=-1 $f(-1) = (-1)^4 + 4(-1)$ For possible inflexion points f"(x)=0 122=0 $\frac{x=0}{f(0)=0}$ · stationeury point at (-1, -3) · possible inflexion point at (0,0)

Note: $f''(x) = 12\pi^2$ >0, for n = 0 17 (0,0) is not an inflexion point <u>ii)</u> ንለ -3/4 0 (-1,-3) For x-intercepts let f(n)=0 $x^{4}+4x = 0$ $x(x^{3}+4) = 0$ x = 0, $x^3 = -4$ $\chi = -3\sqrt{4}$

Section y= e¹x. (a) TIJe dr $\approx \prod_{q} \left(1 + 4(e^2) + e^{2\sqrt{2}} \right) = 3$ =49.7 mits. $(b) f(x) = e^{2x}$ (i) $f'(x) = 4xe^{2x^2}$ $f'(1) = 4e^{2}$. (ii) $f''(x) = 4xe^{2x^2} + 4xe^{2x^2}$ =4e²x² (4x² + 1) $f''(-1) = 4e^{2}(5)$ = 20 e $(c) \quad dV = \frac{36t}{t^2+20}.$ $= 18 \frac{26}{63+20}$

 $V = 18 \ln(t^2 + 120) + C$ when too Voo. O = 18ln(20) + C.C = -181 - (zo)50 $1/= 18/n(E^2+20)-18/n(20)$ $V = 18 \ln \left(\frac{12+20}{20} \right).$ (ii) Find to when V=9. $q = 18 \ln(\frac{(2+20)}{100})$ $\frac{1}{20} + \frac{1}{20} = e^{\frac{1}{2}}$ $\frac{2}{1+20} = 20e^{2}$ -2----E= = 1/20e2-20 t= 3hr 36ming. Since 670 11:36 am.

 $\frac{dh}{dt} = \frac{t^2}{t}$ (iii) $V = \frac{t^3}{3k} + C.$ when t=0 V=9. 9= $\frac{S_0}{V=\frac{f^2}{3L}+q}$ When V=0 , E=5. Findk $0 = \frac{5}{3k} + 9$ $\frac{5}{3k} = -9$ 2 $5^3 = -3^3 k$ $k = -(\frac{5}{3})^{3}$ $=\frac{125}{27}$.

(d) (i) Let f(x) = x + 900x f'(1)= 1 - 900-2-2 $\int^{n}(x) = \frac{1800}{\pi^{3}}$ Start Pts f'(21)=0. $l = \frac{900}{2^2}$ $\chi = \pm 30.$ 7.70 50 x= 30. Native (30) = 1800 70 mining Cahe is \$ [30] = 60. minico (i)Cost=(Cost pr honr) x (hours). 5=4 $T = \frac{D}{S} = \frac{Q}{V}$ has $C(v) = (9000 + 10v^{2})(\frac{d}{v}),$ = $9000 \frac{d}{v} + 10 \frac{d}{v}.$

 $C'(v) = -\frac{90000}{v^2} + 10d.$ $C^{1}(v) = \frac{18000 d}{1/3}$ Stat PF C'(U) = 0. $pod = \frac{9000d}{V^3}$ V=±30. V70 2____ So V=30. Natine C"(30) = 3 20 min.ma. 30 km/h.

$$\begin{aligned} f(x) = An \cdot x + An \cdot x, \quad 0 \leq x \leq 2\pi \\ g) = a \cdot a \quad (1 + An \cdot x) \\ f(x) = 0 \quad when \quad An \cdot x = 0 \\ (x + x = 0, \quad \pi, \quad 2\pi) \\ f(x) = 0 \quad when \quad An \cdot x = 0 \\ (x + x = 0, \quad \pi, \quad 2\pi) \\ f(x) = 0 \quad when \quad An \cdot x = 0 \\ (x + x = 0, \quad \pi, \quad 2\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ f(x) = 0 \quad when \quad An \cdot x = -1 \\ (x + x = 3\pi) \\ (x + x = 3\pi) \\ f(x) = -2\pi \\ (x + x = 3\pi) \\ f(x) = -2\pi \\ (x + x = 3\pi) \\ f(x) = -4\pi \\ (x + x = 3\pi) \\ f(x) = -4\pi \\ (x + x = 3\pi) \\ f(x) = -4\pi \\ (x + x = 3\pi) \\ f(x) = -4\pi \\ (x + x = 3\pi) \\ f(x) = -4\pi \\ (x + x = 3\pi) \\ f(x) = -4\pi \\ (x + x = 3\pi) \\ f(x) = -1 \\ f(x$$