2015

Year 11 Yearly Examination

Mathematics Accelerated

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- Leave your answers in the simplest exact form, unless otherwise stated.
- In Questions 11-16, show relevant mathematical reasoning and/or calculations
- Start each NEW question in a separate answer booklet.

Total Marks - 70

Section I
Pages 2-4
10 Marks

- Attempt Questions $1-10$
- Allow about 15 minutes for this section.

Section II
Pages 5-10
60 marks

- Attempt Questions 11-16
- Allow about 1 hour and 45 minutes for this section

Examiner: \quad Dowdell

Section I

10 marks

Attempt Questions 1-10
Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.
1 A straight line has a gradient of -2 and passes through the point $(4,1)$. What is its equation?

A $y+2 x=6$
B $y=2 x-6$
C $y+2 x-9=0$
D $\quad 2 y=x-2$

2
What is the sum of the series

$$
1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots . ?
$$

A 2
B $\frac{3}{2}$
C $\frac{4}{3}$
D $\frac{10}{9}$

3
What is the expression

$$
\frac{\tan \theta}{\sec \theta}
$$

equivalent to?
A $\frac{\cos ^{2} \theta}{\sin \theta}$
B $\frac{\sin \theta}{\cos ^{2} \theta}$
C $\cos \theta$
D $\sin \theta$

In the triangle $P Q R, \angle P S T$ is equal to $146^{\circ}, T S=T Q$ and $P Q=Q R$. What is the size of $\angle P R Q$?

A 54°
B 68°
C 73°

D 75°

5
The perimeter of a rhombus is 60 cm . If the length of the longer diagonal is 24 cm , what is the length of the shorter diagonal?

A 20 cm
B $\quad 18 \mathrm{~cm}$
C $\quad 15 \mathrm{~cm}$
D 9 cm
6
What is the value of

$$
\int_{0}^{1} \sqrt{x^{2}-2 x+1} d x ?
$$

A -1
B $-\frac{1}{2}$
C $\quad \frac{1}{2}$
D 1

7

8
$9 \quad$ Which equation is equivalent to $\log _{10} y=3 \log _{10} x+2$?
A $y=3 x+2$
B $y=100 x^{3}$
C $y=x^{3}+2$
D $y=x^{3}+100$

10
If $\sin (x+20)^{\circ}=\cos x^{\circ}$ and x° is acute, what is the value of x ?

A 35

B 45

C 55

D 70
The probability of having a particular disease is 5%. The test to determine if a person has this disease or not gives the correct result 83% of the time. What is the probability that a randomly selected person tests positive?

A 0.0415

B 0.203
C 0.246
D 0.83
B. $y=100 x^{3}$

What is

$$
\lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h} ?
$$

A 0
B $\frac{1}{2}$
C $\frac{1}{32}$
D It cannot be determined from the information given

Section II

60 marks

Attempt Questions 11-16
Allow about 1 hours and 45 minutes for this section

Answer each question in a separate writing booklet. Extra writing booklets are available.
In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (10 marks) Start a NEW Writing Booklet
(a) Differentiate the following functions:
(i) $\left(2 x^{3}-1\right)^{4}$
(ii) $x^{2} \sin x$
(iii) $\log _{e}\left(\frac{x-1}{x+2}\right)$
(b) Evaluate the following integrals:
(i)

$$
\int_{0}^{1}\left(3 x^{4}-1\right) d x
$$

(ii)

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{4}} \sin 2 x d x \tag{2}
\end{equation*}
$$

Question 12 (10 marks) Start a NEW Writing Booklet
(a) The size of a colony of bugs is given by $P=400 e^{k t}$ where P is the population after t days.
(i) If there are 560 bugs after 1 day, find the value of k, correct to 2 decimal places.
(ii) When will the colony triple in size? (Answer to the nearest day)
(iii) What is the growth rate of the population after 3 days?
(b) The rate of inflation measures the rate of change of prices. Between January 2014 and December 2014, prices were rising but the rate of inflation was falling. Draw a graph of prices as a function of time that fits this description.
(c) A radioactive substance has a half-life of 100 years.
(i) What amount of the radioactive substance would remain after a period of 500 years?
(ii) How long would it take for a mass of 10 kg to reduce to 8 kg ?

Question 13 (10 marks) Start a NEW Writing Booklet
(a) In the diagram below, $\angle \mathrm{ADE}=\angle \mathrm{AED}$ and $\mathrm{DF}=\mathrm{EF}$.

NOT TO
SCALE
(i) Copy the diagram into your answer booklet.
(ii) Prove that $\triangle A B E \equiv \triangle A C D$, giving reasons.
(iii) Hence prove that $\triangle B F C$ is isosceles.
(b) The sum of the first 9 terms of the series

$$
\log _{3}\left(\frac{1}{x}\right)+\log _{3}\left(\frac{1}{x^{2}}\right)+\log _{3}\left(\frac{1}{x^{3}}\right)+\ldots \ldots . \text { is }-270 .
$$

Find the value of x.
(c) Find the equation of the line (in general form) perpendicular to $3 x-4 y+12=0$ and intersecting it on the x-axis.

Question 14 (10 marks) Start a NEW Writing Booklet

(a) A particle moves in a straight line such that its displacement, $x \mathrm{~cm}$, after t seconds is given by $x=t^{3}-9 t^{2}+24 t-7$.
(i) When and where does the particle first change direction?
(ii) Calculate the total distance travelled in the first 3 seconds.
(iii) What is the average speed in the first second?
(b) The points $A(3,-5)$ and $B(5,9)$ are at opposite ends of the diameter of a circle. Find
(i) the centre of the circle;
(ii) the radius of the circle;
(iii) the two values of k, such that the point $(9, k)$ lies on the circle.
(c) Estimate $\int_{0}^{2} \sin \left(1+x^{2}\right) d x$ by using Simpson's Rule with three function values.

Question 15 (10 marks) Start a NEW Writing Booklet
(a) The equation of a parabola is $y^{2}=12(x-1)$.
(i) Find the coordinates of the vertex of the parabola.
(ii) Find the coordinates of the focus of the parabola.
(iii) Find the equation of the directrix of the parabola.
(b)

The part of the curve $\frac{x^{2}}{4}+y^{2}=1$ that lies in the first quadrant is rotated about the x axis.

Find the volume of the solid of revolution.
(c) A container, initially empty, is filled so that the volume V, in litres, at the time t minutes is given by $V=32 t-4 t^{2}, \quad 0 \leq t \leq 4$.
(i) How much water is in the container when it is full?
(ii) After how many minutes was the container three quarters full?
(iii) At what rate was the water flowing into the container when the container was 1 three quarters full?

Question 16 (10 marks) Start a NEW Writing Booklet
(a) Consider the function $y=108 x-x^{4}$.
(i) Find any stationary points on the curve.
(ii) Does the function have any points of inflexion?
(iii) Sketch the function.
(b) Two walkers A and B start walking at noon 5 towards a point O.
A starts at $\mathrm{P}, 9 \mathrm{~km}$ due south of O and B starts at $Q, 13 \mathrm{~km}$ west of O.
A walks at $4 \mathrm{~km} / \mathrm{hr}$ and B at $3 \mathrm{~km} / \mathrm{hr}$.
Show that if there distance apart after t hours is d km , then $d^{2}=25 t^{2}-150 t+250$.

Hence, find when their distance apart is least and what this distance is.

BLANK PAGE (ALMOST)

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0, \quad-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), \quad x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE: } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

Sample Solutions

Question	Teacher
Q11	JM
Q12	AMG
Q13	PP
Q14	BK
Q15	DH
Q16	PB

MC Answers

1.	C
2.	B
3.	D
4.	C
5.	B
6.	C
7.	A
8.	B
9.	B
10.	B

1 A straight line has a gradient of -2 and passes through the point $(4,1)$. What is its equation?

A $y+2 x=6$
B $y=2 x-6$
C $y+2 x-9=0$
D $2 y=x-2$

$$
\begin{aligned}
y & =m x+b \\
(4,1) \& m & =-2 \\
1 & =(-2)(4)+b \\
b & =9 \\
\therefore y & =-2 x+9 \\
2 x+y-9 & =0
\end{aligned}
$$

2 What is the sum of the series

$$
1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots ?
$$

A 2
B
C $\frac{4}{3}$
D $\frac{10}{9}$

Sum to infinity

$$
\begin{aligned}
\mathrm{S}_{\infty} & =\frac{a}{1-r} \\
a & =1 \& r=\frac{1}{3} \\
\mathrm{~S}_{\infty} & =\frac{1}{1-\frac{1}{3}}=\frac{1}{\frac{2}{3}}=\frac{3}{2}
\end{aligned}
$$

What is the expression

$$
\frac{\tan \theta}{\sec \theta}
$$

equivalent to?
A $\frac{\cos ^{2} \theta}{\sin \theta}$
B $\frac{\sin \theta}{\cos ^{2} \theta}$
C $\cos \theta$
D) $\sin \theta$

$$
\begin{aligned}
\frac{\tan \theta}{\sec \theta} & =\frac{\sin \theta}{\cos \theta} \div \frac{1}{\cos \theta} \\
& =\frac{\sin \theta}{\cos \theta} \times \cos \theta \\
& =\sin \theta
\end{aligned}
$$

In the triangle $P Q R, \angle P S T$ is equal to $146^{\circ}, T S=T Q$ and $P Q=Q R$. What is the size of $\angle P R Q$?

A 54°
B 68°
C 73°
D 75°

In $\Delta T S Q$

$$
\begin{aligned}
\angle T S Q & =180^{\circ}-146^{\circ} \\
& =34^{\circ}(\text { Straight line } P Q) \\
\angle S Q T & \left.=34^{\circ} \text { (Isosceles } \triangle S Q T\right)
\end{aligned}
$$

In $\triangle P Q R$
$\angle P R Q=\frac{180-34}{2}=73^{\circ}$ (Isosceles $\triangle P R Q$)

The perimeter of a rhombus is 60 cm . If the length of the longer diagonal is 24 cm , what is the length of the shorter diagonal?

A 20 cm
B $\quad 18 \mathrm{~cm}$
C $\quad 15 \mathrm{~cm}$
D 9 cm
$P=60=4 x$
$x=15 \mathrm{~cm}$

$\sqrt{15^{2}-12^{2}}=9$
Length of shorter side $=2(9)=18 \mathrm{~cm}$

$$
\int_{0}^{1} \sqrt{x^{2}-2 x+1} d x ?
$$

A -1
B $-\frac{1}{2}$

D 1

$$
\begin{aligned}
\int_{0}^{1}\left(x^{2}-2 x+1\right)^{\frac{1}{2}} d x & =\int_{0}^{1} \sqrt{(x-1)^{2}} d x \\
& =\int_{0}^{1}|x-1| d x \quad[\text { area of shaded triangle }] \\
& =\frac{1}{2}
\end{aligned}
$$

7
If $\sin (x+20)^{\circ}=\cos x^{\circ}$, what is the value of x ?
A 35
B 45
C 55
D 70

7

$$
\begin{aligned}
& \sin (x+20)^{\circ}=\cos x^{\circ} \\
& 90-(x+20)=x \\
& 70=2 x \\
& x=35^{\circ}
\end{aligned}
$$

The probability of having a particular disease is 5%. The test to determine if a person has this disease or not gives the correct result 83% of the time. What is the probability that a randomly selected person tests positive?

A 0.0415
B 0.203
C 0.246

D 0.83

Required probability is made up of those that are positive and get a correct result and those that are negative and get a false result.

$$
\begin{aligned}
P & =(0.05)(0.83)+(0.95)(0.17) \\
& =0.203
\end{aligned}
$$

$9 \quad$ Which equation is equivalent to $\log _{10} y=3 \log _{10} x+2$?
A $y=3 x+2$
B $y=100 x^{3}$
C $y=x^{3}+2$
D $y=x^{3}+100$
$\log _{10} y=3 \log _{10} x+2$
$\therefore \log _{10} y=\log _{10} x^{3}+2$
$\therefore \log _{10} y-\log _{10} x^{3}=2$
$\therefore \log _{10} \frac{y}{x^{3}}=2$
$\therefore \frac{y}{x^{3}}=10^{2}$
$\therefore y=100 x^{3}$

$$
\lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h} ?
$$

A 0

D It cannot be determined from the information given

Let $f(x)=8 x^{8}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \begin{aligned}
\therefore f^{\prime}\left(\frac{1}{2}\right) & =\lim _{h \rightarrow 0} \frac{f\left(\frac{1}{2}+h\right)-f\left(\frac{1}{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h} \\
f^{\prime}(x) & =64 x^{7} \\
\therefore f^{\prime}\left(\frac{1}{2}\right) & =64\left(\frac{1}{2}\right)^{7} \\
& =\frac{1}{2}
\end{aligned} \\
& \therefore \lim _{h \rightarrow 0} \frac{8\left(\frac{1}{2}+h\right)^{8}-8\left(\frac{1}{2}\right)^{8}}{h}=\frac{1}{2}
\end{aligned}
$$

Section II
Question 11
(a)

$$
\text { i) } \begin{aligned}
\frac{d}{d x}\left(2 x^{3}-1\right)^{4} & =4\left(2 x^{3}-1\right)^{3} \cdot 6 x^{2} \\
& =24 x^{2}\left(2 x^{3}-1\right)^{3}
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{d}{d x} & \left(x^{2} \sin x\right) \quad \text { Let } u=x^{2} \quad, \quad v=\sin x \\
& =v u^{\prime}+u v^{\prime} \\
& =\sin x \cdot 2 x+x^{\prime} \cdot \cos x \\
& =x(2 \sin x+x \cos x)
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{d}{d x}\left(\log _{e}\left(\frac{x-1}{x+2}\right)\right) & =\frac{d}{d x}\left(\log _{e}(x-1)-\log _{e}(x+2)\right) \\
& =\frac{1}{x-1}-\frac{1}{x+2} \\
& =\frac{x+2-(x-1)}{(x-1)(x+2)} \\
& =\frac{3}{(x-1)(x+2)}
\end{aligned}
$$

Comments:
These questions were generally done well.
With part iii) many students didn't simplify the logarithm first.
(b) i)

$$
\begin{aligned}
\int_{0}^{1}\left(3 x^{4}-1\right) d x & =\left[\frac{3 x^{5}}{5}-x\right]_{0}^{1} \\
& =\left(\frac{3(1)^{5}}{5}-1\right)^{-\left(\frac{3(0)^{5}}{5}-0\right)} \\
& =-\frac{2}{5}
\end{aligned}
$$

ii) $\int_{0}^{\pi / 4} \sin 2 x d x$
$=\left[-\frac{1}{2} \cos 2 x\right]_{0}^{\pi / 4}$

$$
=\left(-\frac{1}{2} \cos 2\left(\frac{\pi}{4}\right)\right)-\left(-\frac{1}{2} \cos 2(0)\right)
$$

$$
=\left(-\frac{1}{2}(0)\right)-\left(-\frac{1}{2}(1)\right)
$$

$$
=\frac{1}{2}
$$

Comments:
These questions were generally done well.

SBHS Y11 Yearly Maths Acc 2015

Question 12

(a) $P=400 e^{k t}$
(i) When $t=1, P=560$

$$
\begin{aligned}
\therefore \frac{560}{400} & =e^{k} \\
k & =\ln \left(\frac{560}{400}\right) \\
& =3364 \ldots . . \quad \text { to } 2 \text { d.p. } \\
& \simeq 0.34 \quad \text {. }
\end{aligned}
$$

Comment: Universally well-answered.
(ii) The colony has tripled when $P=1200$.

$$
\begin{aligned}
1200 & =400 e^{k t} \\
e^{k t} & =3 \\
k t & =\ln 3 \\
t & =\frac{\ln 3}{k} \\
& =3.2650 \ldots . \\
& \simeq 3 \text { days, to the nearest day. }
\end{aligned}
$$

Comment: Generally well-answered, although some thought it would be better to round up - they were given full marks. Some others tripled the first day population, and received no marks ("correct substitution into a correct formula").
(iii) Growth rate after 3 days:

$$
\begin{aligned}
\frac{d P}{d t} & =400 \mathrm{ke}^{3 k} \\
& =369.3 \mathrm{bugs} / \mathrm{day}
\end{aligned}
$$

Comment: Many rounded k to 0.34 before calculation, to get 377 . They were given full marks.
(b) $\frac{d P}{d t}>0, \frac{d^{2} P}{d t^{2}}<0$

Time

Comment: Almost every candidate got this right.
(c) (i) 500 years is 5 half-lives, thus

$$
M_{0} \rightarrow M_{0} \times\left(\frac{1}{2}\right)^{5}=\frac{M_{0}}{32}
$$

Hence $\frac{1}{32}$ part remains.
Comment: Some did not understand the question. Almost all got it right.
(ii) $\quad M=M_{0} e^{-k t}$

When $t=100$, the mass is halved.

$$
\begin{aligned}
& \frac{1}{2}=e^{-100 k} \\
&-100 k=\ln \left(\frac{1}{2}\right) \\
& k=\frac{\ln 2}{100} \\
&=0.00693 \ldots
\end{aligned}
$$

Now let the original mass be 10, and find time to decay to 8 .

$$
\begin{aligned}
8 & =10 e^{-k t} \\
-k t & =\ln (0.8) \\
t & =\frac{\ln (0.8)}{-k} \\
& \simeq 32.19 \text { years. }
\end{aligned}
$$

Comment: Generally very well answered. No particular error stood out.

Question 13 (10 marks)

(a) In the diagram below, $\angle A D E=\angle A E D$ and $D F=E F$.

(i) Copy the diagram into your answer booklet.
(ii) Prove that $\triangle A B E \equiv \triangle A C D$, giving reasons.

$$
\begin{aligned}
& \angle A D E=\angle A E D \\
& \angle E D F=\angle D E F
\end{aligned}
$$

(given)
(equal angles opposite equal sides, $D F$ and $E F$)

$$
\begin{aligned}
\angle A D C & =\angle A D E+\angle E D F \\
& =\angle A E D+\angle D E F \\
& =\angle A E B
\end{aligned}
$$

(from above)

This or it's equivalent was needed.

In $\triangle A B E$ and $\triangle A C D$
$A E=A D$
$\angle A E B=\angle A D C$
$\angle B A E=\angle C A D$
$\therefore \triangle A B E \equiv \triangle A C D$
(given)
(proven above)
(common angle)
(AAS)
(iii) Hence prove that $\triangle B F C$ is isosceles.

Method 1:
$E B=D C \quad$ (matching sides of congruent triangles)
$F B=E B-E F$
$=D C-D F$
$\therefore F B=F C$
$\therefore \triangle F B C$ is isosceles.

Method 2:

$A B=A C$
$\therefore \angle A B C=\angle A C B$
$\angle A B E=\angle A C D$
$\therefore \angle F B C=\angle F C B$
$\therefore F B=F C$
$\therefore \triangle B F C$ is isosceles
(matching sides of congruent triangles)
(equal angles opposite equal sides)
(matching angles of congruent triangles)
(subtraction of equal angles from equal angles)
(equal sides opposite equal angles)

Comment

Students that made simple mistakes with reasons or inappropriate use of symbols lost a $\frac{1}{2}$ mark for each mistake. Students that made a logical error lost 1 mark for each error.
In part (iii), students who made the question easier could only score 1 mark.
Students are encouraged to plan their answer first before starting to write their solution down.
(b) The sum of the first 9 terms of the series

$$
\log _{3}\left(\frac{1}{x}\right)+\log _{3}\left(\frac{1}{x^{2}}\right)+\log _{3}\left(\frac{1}{x^{3}}\right)+\ldots \text { is }-270 .
$$

Find the value of x.

Arithmetic series with $a=-\log _{3} x$ and $d=-\log _{3} x$

$$
\begin{aligned}
& S_{n}=\frac{n}{2}(a+l) \\
& S_{9}=\frac{9}{2}\left(-\log _{3} x-9 \log _{3} x\right) \\
& \quad=-45 \log _{3} x \\
& \therefore-45 \log _{3} x=-270 \\
& \therefore \log _{3} x=6 \\
& \therefore x=3^{6}=729
\end{aligned}
$$

Comment

Generally when students started from the basis of an arithmetic series they were successful.
Students that made the mistake of assuming that the series was geometric could only score 1 mark, but then for only some substantive work e.g. showing $r=2$ or equivalent.
(c) Find the equation of the line (in general form) perpendicular to $3 x-4 y+12=0$ and intersecting it on the x-axis.
x-intercept of $3 x-4 y+12=0: \quad x=-4$

Method 1:

The line perpendicular to $3 x-4 y+12=0$ is $4 x+3 y+k=0$
Substitute $(-4,0): \quad 4 \times(-4)+3 \times 0+k=0 \Rightarrow k=16$

$$
\therefore 4 x+3 y+16=0
$$

Method 2:

$$
\begin{aligned}
& 3 x-4 y+12=0 \Rightarrow 4 y=3 x+12 \\
& \therefore y=\frac{3}{4} x+3 \\
& \therefore m_{\text {perp }}=-\frac{4}{3} \\
& \therefore y-0=-\frac{4}{3}(x+4) \\
& \therefore 3 y=-4 x-16 \\
& \therefore 4 x+3 y+16=0
\end{aligned}
$$

Comment

A surprising number of students could not work out the x-intercept.
$1 Q 14$.
(a) (c)

$$
\left\{\begin{array}{l}
x=t^{3}-9 t^{2}+24 t-7 \\
V=3 t^{2}-18 t+24
\end{array}\right.
$$

For stat pts $v=0 \Rightarrow t^{2}-6 t+8=0$

$$
t=2 \text { or } t=4(t-4)(t-2)=0
$$

\therefore particle lit changes direction when $t=2 \mathrm{sec}$

$$
\begin{align*}
x(2) & =8-36+48-7 \tag{2}\\
x & =13 \mathrm{~cm}
\end{align*}
$$

$x=13 \mathrm{~cm}$
ie particle 1 st chareps direction when $t=2 \sec$ at $x=B_{0 n}$
(ii) Distance travelled in first 3 sec

$$
\begin{align*}
& \text { Distance travelled in first ssec } \\
& =|x(3)-x(2)+|x(2)-x(0)| \tag{2}\\
& =|11-13+|13-(-7)| \\
& =2+20 . \\
& =22 \mathrm{~cm} .
\end{align*}
$$

(iii) Av speed in 1 st second $=\frac{x(1)-x(0)}{1-0}$

$$
\begin{aligned}
& =\frac{9--7}{1} \\
& =16 \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

(a) was done well.
(b) Common mistake was to find displacement
rather than distance. 1 mark awarded if students
realized they had to split time into $0-2$ sec and
(c) Comm.
(c) Common error was to find the average of the
velocities.
(b)

(i) Centre $=$ midpoint $A B=(4,2)$
(ii)

$$
\begin{aligned}
\text { Radius } & =\sqrt{(5-4)^{2}+(9-2)^{2}} \\
& =\sqrt{1+49} \\
& =\sqrt{50}=5 \sqrt{2} .
\end{aligned}
$$

(iii) $(9, k)$ lies on circle. Egn of circle is

$$
\begin{array}{r}
(x-4)^{2}+(y-2)^{2}=50.1 \\
\operatorname{sun} \text { in }(9, k) \Rightarrow 25+(k-2)^{2}=50 \\
(k-2)^{2}=25 \\
k-2= \pm 5 \\
k=2 \pm 5 \\
\because k=3 \text { or } 7
\end{array}
$$

This section was generally done well.
(c) $\int_{0}^{2} \sin \left(1+x^{2}\right) d x$

$$
A=\frac{1}{3}[\text { ends }+4(\text { odds })]
$$

$$
=\frac{1}{2}[\sin 1+\sin 5+4 \sin 2]
$$

$$
=\frac{3}{3}[0.8414+-0.9589+3.637]
$$

$$
=1.1732
$$

$$
A=1.17 \text { to } 2 d p
$$

Many students made the mistake of using degrees instead of radians.

2015 Accelerated Mathematics Yearly:

Solutions- Question 15

15. (a) The equation of a parabola is $y^{2}=12(x-1)$.
(i) Find the coordinates of the vertex of the parabola.

Solution: Vertex $(1,0)$.
Comment: Generally well done.
Students at this level should be aware that ordered pairs are written in parentheses, although no marks were deducted for failure to observe this convention.
(ii) Find the coordinates of the focus of the parabola.
Solution:
(iii) Find the equation of the directrix of the parabola.

Solution: Directrix $x=-2$.
Comment: Too many candidates do not realise that the directrix is a line, not a point (the word "equation" in the question should have been sufficient reminder).
(b)

The part of the curve $\frac{x^{2}}{4}+y^{2}=1$ that lies in the first quadrant is rotated about the x-axis.
Find the volume of the solid of revolution.
Solution: When $x=0, y=1$,
when $y=0, x=2$.

$$
\begin{aligned}
\text { Vol. } & =\pi \int_{0}^{2} y^{2} d x \\
& =\pi \int_{0}^{2}\left(1-\frac{x^{2}}{4}\right) d x \\
& =\pi\left[x-\frac{x^{3}}{12}\right]_{0}^{2} \\
& =\pi\left(2-\frac{2}{3}-0+0\right) \\
& =\frac{4 \pi}{3}
\end{aligned}
$$

Comment: This was generally well done. Candidates who gave an approximate answer after the exact solution were not penalised.
(c) A container, initially empty, is filled so that the volume V, in litres, at the time t minutes is given by $V=32 t-4 t^{2}, 0 \leqslant t \leqslant 4$.
(i) How much water is in the container when it is full?

Solution: $\quad \frac{d V}{d t}=32-8 t$,

$$
=0 \text { when } t=4 .
$$

$$
\frac{d^{2} V}{d t^{2}}=-8, \text { i.e. maximum }
$$

$$
\therefore V_{\text {full }}=32 \times 4-4 \times 4^{2},
$$

$$
=64 \mathrm{~L} .
$$

Comment: To gain both marks, candidates had to show why they chose $t=4$ by either differentiation to establish a maximum, or by a clearly drawn sketch, or by the year 10 method of finding the vertex.
(ii) After how many minutes was the container three quarters full?

$$
\text { Solution: } \begin{aligned}
\frac{3}{4} \text { of } 64 & =48, \\
48 & =32 t-4 t^{2}, \\
t^{2}-8 t+12 & =0 \\
(t-6)(t-2) & =0 \\
t & =6,2 \\
\text { But } t & \leqslant 4, \\
\text { so } t & =2 \text { minutes. }
\end{aligned}
$$

Comment: The first mark was for getting the correct factorisation. The second for a clear explanation of why $t=2$ is the only correct solution.
(iii) At what rate was the water flowing into the container when the container was three quarters full?

Solution: $\frac{d V}{d t}=32-8 \times 2$,
$=16$.
i.e. $16 \mathrm{~L} / \mathrm{min}$.

Comment: This was well done by the majority of candidates, although some were confused about what the units are.

Quistion 16.

$$
\text { (a).(n)y} \begin{aligned}
y & =108 x-x^{4} \\
y^{\prime} & =108-4 x^{3} \\
y^{\prime \prime} & =-12 x^{2} .
\end{aligned}
$$

For stationaly preits

$$
y^{\prime}=0
$$

ie. $108-4 x^{3}=0$.

$$
\begin{aligned}
x^{3} & =27 \\
x & =3
\end{aligned}
$$

$\therefore(3,243)$ is statisiony

$$
\text { When } x=3 \quad \begin{aligned}
z^{\prime \prime} & =-12 \times 9 \\
& =-108
\end{aligned}
$$

$$
<0 \quad \therefore \text { Max. Tuavina porar. }
$$

CoMminet. The vart majsirly of sterdents gaied
full marh.
(II). For heints of inplecuin

Let $y^{\prime \prime}=0$

$$
-12 x^{2}=0
$$

$$
x=0
$$

tent

x	-1	0	1
$y^{\prime \prime}$	-12	0	-12

\therefore NO Citanal in concavity
\therefore wo. PT Y LMELAKION.
Commrat I Amphatont ta tent for chayge in crreaiily? USING NUMBIERS (VOLURS) AN g'l.
(III)

commines well dare.
(b)

