

BAULKHAM HILLS HIGH SCHOOL

2012 YEAR 11 YEARLY

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks – 70

This paper consists of TWO sections.

Section 1 – Multiple Choice 10 marks

Section 2 – Extended Response 60 marks Attempt all questions Start a new page for each question

Section 1 –Multiple Choice (10 marks) Attempt all questions.

Ans	swer the following on	the answer sheet prov	vided.		Marks
1	What is the solution of (A) $x < -3$, $x > 4$	of $ 1 - 2x < 7$? (B) $x < -4$, $x > 3$	(C) $-3 < x < 4$	(D) $-4 < x < 3$	1
2	Which of the followi	ing could be the grapl	$n of = (4 - x)^2$?		1
	(A)	(B)	(C)	(D)	
	4	y 4 x		x	
3	Factorise fully: $x^2 - 4y^2 + 16y - 16$				1
	(A) $(x + 2y - 4)(x - 2y - 4)$ (B) $(x - 2y - 4)(x + 2y + 4)$ (D) $(x - 2y + 4)(x + 2y - 4)$				
4	If $a^{b} = 3$, then $a^{4b} - 3$	– 5 equals			1
	(A) 76	(B) 7	(C) 22	(D) 86	
5	(2,5) is the midpoint $x + y =$	of (5, <i>y</i>) and (<i>x</i> , 7).			1
	(A) 2	(B) 3	(C) 4	(D) 18	
6	If the equation $(1 - 3k)x^2 + 3x - 4 = 0$ has real roots, and k is an integer, what is the largest possible value for k?				1
	(A) -2	(B) - 1	(C) 0	(D) 1	
7	If a>b, which staten (A) $a^2 > b^2$	-	(C) $-a > -b$	(D) $2^a > 2^b$	1
8					1
	$\begin{array}{c c} a \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				
	(A) $c^2 = a^2 + b^2$ (C) $a^2 = b^2 + c^2$		(B) $c^2 = a^2 + b^2$ (D) $\frac{a}{\sin a} = \frac{c}{\cos \theta}$	$-2ab\cos\theta$	

Section II – Extended Response Attempt all questions. Show all necessary working. Start each question on a new page. Clearly indicate question number. Write your name and teacher's name at the top of each new page.

Question 11 (15 marks) - Start a new page		Marks
a)	If $(2 + \sqrt{3})^2 = a + \sqrt{b}$. where and b are rational, find the values of a and b	2
b)	Solve $8^{2-x} = 4^{2x}$	2
c)	Solve $\frac{3x-1}{4} - \frac{2x-5}{8} = x$	2
d)	Differentiate (i) $y = \frac{2x-1}{x+1}$ (ii) $f(x) = (2x - 1)(3x + 2)^5$	2 3
e)	State the domain and range of the function $f(x) = 2\sqrt{x+2} - 3$	2
f)	Evaluate $\lim_{x \to 2} \frac{4 - x^2}{x^3 - 8}$	2

Que	uestion 12 (15 marks) - Start a new page	
a)	Write the set of inequalities whose intersection describes the shaded region $ \frac{y^{1}}{y} = x $	3
b)	Find the exact value of cos 240°	1
c)	Solve for $0^{\circ} \le x \le 360^{\circ}$: (i) $\cos 2x = \frac{1}{\sqrt{2}}$ (ii) $3\sin^2 x + 2\sin x - 1 = 0$	2 3
d)	ABCD is a rectangle with AB=12 cm and AD=6 cm. F is a point on AB such that AE=x and AF=4x. $A \xrightarrow{f} a f$	2
	(ii) Without using calculus, find the value of x for which the quadrilateral EFCD has maximum area. (Clearly show your working)	1
e)	If the function $f(x) = (k - 1)x^2 + (k + 2)x + 4$ is positive definite, find all possible values of k	3

Que	estion 13	(15 marks) - Start a new page	Marks
a)	Find the equation of the tangent to the curve $y = x^3 - 3x$ at the point on the curve where $x = 2$		3
b)) Let α and β be the roots of the equation $2x^2 - 5x - 2 = 0$. Evaluate:		
	(i)	$\alpha + \beta$	1
	(ii)	lphaeta	1
	(iii)	$(\alpha - 2)(\beta - 2)$	1

Que	estion 14 (15 marks) - Start a new page	
a)	For the curve $y = x^3 - 2x^2 - 4x$: (i) Find the stationary points and determine their nature (ii) Show that there is a point of inflexion and determine its coordinates (iii) Neatly sketch the curve clearly showing its important features (<i>x</i> -intercepts are not required)	3 2 2
b)	ABCD is a trapezium with AB//DC, AB=1, DC=k and $k > 1$. Its diagonals intersect at X, with BX=x and AX=y. Let $\angle AXD = \theta$. (i) Prove that $\triangle ABX$ is similar to $\triangle DCX$ (ii) Explain why $DX = kx$ and $CX = ky$. (iii) Show that $AD^2 - BC^2 = (k^2 - 1)(x^2 - y^2)$ (iv) Find the ratio $\frac{AD^2 - BC^2}{DB^2 - AC^2}$ in its simplest form	2 1 3 2
	End of Examination	

1.)
$$pomain: xz = 2 \quad \leftarrow i$$

 $Range: f(x) \ge -3 \quad (or \ yz = 3)$
 $f) \quad \lim_{x \ge 2} \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x = x)(x + 2x + y) \quad \leftarrow i$
 $x \ge 2 \quad (x + 2)^2 \quad + (k - i), + t$
 $= \quad - \frac{4}{3} \quad \leftarrow i \quad (x + 2)^2 \quad - (k - i), + t$
 $= \quad - \frac{4}{3} \quad \leftarrow i \quad (x + 2)^2 \quad - (k - i), + t$
 $= \quad - \frac{4}{3} \quad \leftarrow i \quad (x + 2)^2 \quad - (k - i), + t$
 $= \quad - \frac{4}{3} \quad \leftarrow i \quad (x + 2)(k - i) \quad (y + 2 - i)$
 $g \ge 2 \quad (or \ g \ge 0) \leftarrow i \quad but \quad also \quad a = k - i \ge 0$
 $g \ge 24 \quad o' = - \cos i 60^\circ = -\frac{1}{2} \quad (x + 2)(k - i) \quad (y + 2 - i)$
 $(y \ge 2 \quad (or \ g \ge 0) \leftarrow i \quad but \quad also \quad a = k - i \ge 0$
 $i) \quad \cos 24 \quad o' = - \cos i 60^\circ = -\frac{1}{2} \quad (y = 4k - i) \quad (y + i$

O13 (cont) (1) V) At D: y=-2 $b(1) \alpha + \beta = -b = 5$ -2 = 3x + 10 $\mu = \frac{1}{\alpha} = \frac{1}{\alpha} = \frac{-2}{2} = -1 \quad (1)$ 3x = -12111) (x-2) (B-2) (1): D(-4,-2) $= \alpha \beta - 2\alpha - 2\beta + 4$ B VI) A « $= \alpha \beta - 2(\alpha + \beta) + 4$ $= -1 - 2\left(\frac{5}{2}\right) + 4$ 3 (1)= -2 D $C_{1}AB = \sqrt{(5+3)^{2} + (7-1)^{2}}$ = 64 + 36 $A_1 = \frac{1}{2} \times 6 \times 3 = 9$ (1) = 100 $A_2 = \frac{1}{2} \times 10 \times \frac{21}{5} = 21 \ (1)$ (1)= 10 units Total area = 30 units $|1| d = \left| \frac{3(2) - 4(-2) + 7}{\sqrt{3^2 + (-4)^2}} \right|$ (Also accept 36 units2, because given equation for AB is incorrect *←*(I) = <u>21</u> units. ←(1) $\begin{array}{c} 111 \\ m \\ Bc \\ \end{array} = \frac{7+2}{5-2} = \frac{9}{3} = 3 \\ \end{array}$ (1)Ap//BC IV): AD has m=3, and passes through (-3,1) (1) $y-l=3(\alpha+3)$ (1)y = 3x + 10

Question 15.

")
$$\frac{Dx}{x} = \frac{Cx}{y} = \frac{k}{1}$$
 (matching sides of similar)
 $\therefore Dx = kx$ and $Cx = ky$

$$\begin{array}{ll} \text{III} & AD^{2} = (kx)^{2} + y^{2} - 2.kx \cdot y \cdot \cos \Theta \\ & = k^{2}x^{2} + y^{2} - 2kxy \cos \Theta & -(1) \\ \text{Use (osine } \\ \text{Rule } \\ \text{Rule } \\ \text{(1)} \\ BC^{2} = (ky)^{2} + x^{2} - 2.ky \cdot x \cdot \cos \Theta \\ & = k^{2}y^{2} + x^{2} - 2kxy \cos \Theta & -(2) \\ \text{Subtracting } \\ \text{(1)} - (2) \\ \text{AD}^{2} - BC^{2} = k^{2}x^{2} + y^{2} - k^{2}y^{2} - x^{2} \\ \end{array}$$

$$= (k^{2}-1)x^{2} + (1-k^{2})y^{2}$$

$$= (k^{2}-1)x^{2} - (k^{2}-1)y^{2}$$

$$i)$$

$$= (k^{2}-1)(x^{2} - y^{2})$$

$$iv) DB^{2} = (kx + x)^{2}$$

$$= (x(k+1))^{2}$$

$$= x^{2}(k+1)^{2}$$

$$Ac^{2} = (y + ky)^{2}$$

$$= y^{2}(k+1)^{2}$$

$$DB^{2} - Ac^{2} = (k+1)^{2}x^{2} - (k+1)^{2}y^{2}$$

$$= (k+1)^{2}(x^{2} - y^{2})$$

$$Ratio required = \frac{(k^{2}-1)(x^{2} - y^{2})}{(k+1)^{2}(x^{2} - y^{2})}$$

$$= \frac{(k-1)(k+1)}{(k+1)^{2}}$$

$$= \frac{k-1}{k+1}$$
Answer - fully (1) simplified