

BAULKHAM HILLS HIGH SCHOOL

2012

YEAR 11 YEARLY

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks - 70

This paper consists of TWO sections.

Section 1 - Multiple Choice 10 marks

Section 2 - Extended Response 60 marks
Attempt all questions
Start a new page for each question

Section 1 -Multiple Choice (10 marks)

Attempt all questions.

Answer the following on the answer sheet provided.

1 What is the solution of $|1-2 x|<7$?
(A) $x<-3, x>4$
(B) $x<-4, x\rangle 3$
(C) $-3<x<4$
(D) $-4<x<3$

1

2 Which of the following could be the graph of $=(4-x)^{2}$?
(A)
(B)
(C)
(D)

3 Factorise fully: $x^{2}-4 y^{2}+16 y-16$
(A) $(x+2 y-4)(x-2 y-4)$
(B) $(x-2 y-4)(x+2 y+4)$
(C) $(x-2 y+4)^{2}$
(D) $(x-2 y+4)(x+2 y-4)$

4 If $a^{b}=3$, then $a^{4 b}-5$ equals
(A) 76
(B) 7
(C) 22
(D) 86
$5(2,5)$ is the midpoint of $(5, y)$ and $(x, 7)$.
$x+y=$
(A) 2
(B) 3
(C) 4
(D) 18

6 If the equation $(1-3 k) x^{2}+3 x-4=0$ has real roots, and k is an integer, what is the largest possible value for k ?
(A) -2
(B) -1
(C) 0
(D) 1

7 If $\mathrm{a}>\mathrm{b}$, which statement is always true?
(A) $a^{2}>b^{2}$
(B) $\frac{1}{a}>\frac{1}{b}$
(C) $-a>-b$
(D) $2^{a}>2^{b}$

8 Which of the following statements is true for this diagram?

(A) $c^{2}=a^{2}+b^{2}+2 a b \cos \theta$
(B) $c^{2}=a^{2}+b^{2}-2 a b \cos \theta$
(C) $a^{2}=b^{2}+c^{2}-2 b c \cos \theta$
(D) $\frac{a}{\sin \alpha}=\frac{c}{\cos \theta}$

9

At which of the points shown are y^{\prime} and $y^{\prime \prime}$ both negative?
(A) A
(B) B
(C) C
(D) D

10 The area of a rectangle is $80 \mathrm{~m}^{2}$ and its length is x metres. Its perimeter, in metres, is:
(A) $2 x+160$
(B) $2 x+\frac{80}{x}$
(C) $2 x+\frac{40}{x}$
(D) $2 x+\frac{160}{x}$

End of Section I

Section II - Extended Response

Attempt all questions. Show all necessary working.
Start each question on a new page. Clearly indicate question number.
Write your name and teacher's name at the top of each new page.

Question 11 (15 marks) - Start a new page

a) If $(2+\sqrt{3})^{2}=a+\sqrt{b}$. where and b are rational, find the values of a and b
b) Solve $8^{2-x}=4^{2 x}$
c) Solve $\frac{3 x-1}{4}-\frac{2 x-5}{8}=x$
d) Differentiate
(i) $y=\frac{2 x-1}{x+1}$
2
(ii) $\quad f(x) \stackrel{x+1}{=}(2 x-1)(3 x+2)^{5}$
e) State the domain and range of the function $f(x)=2 \sqrt{x+2}-3$
f) Evaluate $\lim _{x \rightarrow 2} \frac{4-x^{2}}{x^{3}-8}$
a) Write the set of inequalities whose intersection describes the shaded region

b) Find the exact value of $\cos 240^{\circ}$
c) Solve for $0^{\circ} \leq x \leq 360^{\circ}$:
(i) $\quad \cos 2 x=\frac{1}{\sqrt{2}}$
(ii) $3 \sin ^{2} x+2 \sin x-1=0$
d) ABCD is a rectangle with $\mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{AD}=6 \mathrm{~cm}$. F is a point on AB such that $\mathrm{AE}=x$ and $\mathrm{AF}=4 x$.

(i) Show that the area of quadrilateral EFCD is $\left(36+12 x-2 x^{2}\right) \mathrm{cm}^{2}$
(ii) Without using calculus, find the value of x for which the quadrilateral EFCD has maximum area. (Clearly show your working)
e) If the function $f(x)=(k-1) x^{2}+(k+2) x+4$ is positive definite, find all possible values of k

Question 13 (15 marks) - Start a new page

a) Find the equation of the tangent to the curve $y=x^{3}-3 x$ at the point on the curve where $x=2$
b) Let α and β be the roots of the equation $2 x^{2}-5 x-2=0$.

Evaluate:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $(\alpha-2)(\beta-2)$
c) A, B and C are the points $(-3,1),(5,7)$ and $(2,-2)$ respectively.

The equation of the line AB is $3 x-4 y+7=0$ and the equation of DC is $y=-2$. $A D$ is parallel to $B C$.

(i) Find the length of $A B$
(ii) Calculate the perpendicular distance from C to AB
(iii) Find the gradient of BC
(iv) Show that the equation of AD is $y=3 x+10$
(v) State the coordinates of D
(vi) Find the area of quadrilateral ABCD

Question 14 (15 marks) - Start a new page

a) For the curve $y=x^{3}-2 x^{2}-4 x$:
(i) Find the stationary points and determine their nature
(ii) Show that there is a point of inflexion and determine its coordinates
(iii) Neatly sketch the curve clearly showing its important features (x-intercepts are not required)
b) ABCD is a trapezium with $\mathrm{AB} / / \mathrm{DC}, \mathrm{AB}=1, \mathrm{DC}=k$ and $k>1$. Its diagonals intersect at X , with $\mathrm{BX}=x$ and $\mathrm{AX}=y$.
Let $\angle A X D=\theta$.

(i) Prove that $\triangle A B X$ is similar to $\triangle D C X$
(ii) Explain why $D X=k x$ and $C X=k y$.
(iii) Show that $A D^{2}-B C^{2}=\left(k^{2}-1\right)\left(x^{2}-y^{2}\right)$
(iv) Find the ratio $\frac{A D^{2}-B C^{2}}{D B^{2}-A C^{2}}$ in its simplest form

SOLUTIONS: Year 11 Yearly Exam $2012(z$-unit)

SECTION I
1.

$$
\begin{align*}
& -7<1-2 x<7 \\
& -8<-2 x<6 \\
& 4>x>-3 \\
& -3<x<4 \tag{C}
\end{align*}
$$

2.

(B)
3.

$$
\begin{align*}
& x^{2}-\left(4 y^{2}-16 y+16\right) \\
= & x^{2}-(2 y-4)^{2} \\
= & (x-(2 y-4))(x+(2 y-4)) \\
= & (x-2 y+4)(x+2 y-4) \tag{D}
\end{align*}
$$

4.

$$
\begin{gather*}
\left(a^{b}\right)^{4}-5=3^{4}-5 \\
=76 . \tag{4}
\end{gather*}
$$

5 .

$$
\begin{align*}
& \frac{5+x}{2}=2 \quad x=-1 \\
& \frac{y+7}{2}=5 \quad y=3 \\
& \therefore x+y=-1+3=2 \tag{A}
\end{align*}
$$

6.

$$
\begin{aligned}
\Delta & =3^{2}-4(1-3 k) \cdot-4 \\
& =9+16-48 k \\
& =25-48 k \geqslant 0
\end{aligned}
$$

when $-48 k \geqslant-25$

$$
\begin{equation*}
k \leqslant \frac{25}{48} \tag{c}
\end{equation*}
$$

Largect integer $k=0$
7.
(D)
8.

$$
\begin{align*}
c^{2} & =a^{2}+b^{2}-2 a b \cos \left(180^{\circ}-\theta\right) \\
& =a^{2}+b^{2}-2 a b-\cos \theta \\
& =a^{2}+b^{2}+2 a b \cos \theta \tag{A}
\end{align*}
$$

9. Decreasing + conc. down
10. $\Gamma_{x} y \quad x y=80: y=\frac{80}{x}$

$$
\begin{equation*}
p=2 x+2 y=2 x+\frac{160}{x} \tag{D}
\end{equation*}
$$

QII.
a)

$$
\begin{gather*}
(2+\sqrt{3})^{2}=4+4 \sqrt{3}+3 \\
=7+4 \sqrt{3} \\
=7+\sqrt{48} \\
\therefore a=7, \quad b=48
\end{gather*}
$$

b)

$$
\begin{gather*}
\left(2^{3}\right)^{2-x}=\left(2^{2}\right)^{2 x} \\
2^{6-3 x}=2^{4 x} \\
6-3 x=4 x \\
7 x=6 \\
x=6 / 7 .
\end{gather*}
$$

c)

$$
\begin{aligned}
& \frac{2(3 x-1)-1(2 x-5)}{8}=x \\
& 6 x-2-2 x+5=8 x \\
& 4 x+3=8 x \\
& 3=4 x \\
& x=\frac{3}{4}
\end{aligned}
$$

d) (i)

$$
\begin{array}{ll}
u=2 x-1 & u^{\prime}=2 \\
v=x+1 & v^{\prime}=1
\end{array}
$$

$$
\frac{d y}{d x}=\frac{v u^{\prime}-u v^{\prime}}{v^{2}}
$$

$$
=\frac{(x+1) \cdot 2-(2 x-1) \cdot 1}{(x+1)^{2}}-1
$$

$$
=\frac{2 x+2-2 x+1}{(x+1)^{2}}
$$

$$
=\frac{3}{(x+1)^{2}}
$$

(ii)

$$
\begin{aligned}
& u=2 x-1 \quad u^{\prime}=2 \\
& v=(3 x+2)^{5} \quad v^{\prime}=5(3 x+2)^{4} 3 \\
& =15(3 x+2)^{4} \\
& =u v^{\prime}+v u^{\prime} \quad \\
& =\underbrace{15(2 x-1)(3 x+2)^{4}}_{1}+2(3 x+2)^{5}
\end{aligned}
$$

$$
f^{\prime}(x)=u v^{\prime}+v u^{\prime}
$$

e) Domain : $x \geqslant-2$

Range: $f(x) \geqslant-3 \quad$ (or $y \geqslant-3$)
f)

$$
\begin{align*}
& \lim _{x \rightarrow 2} \frac{-\left(2^{-1} x\right)(2+x)}{(x-2)\left(x^{2}+2 x+4\right)} \leftarrow 1 \\
= & \lim _{x \rightarrow 2} \frac{-(2+x)}{x^{2}+2 x+4} \\
= & \frac{-4}{4+4+4} \\
= & -\frac{1}{3}
\end{align*}
$$

Q12.
a)

$$
\begin{aligned}
\text { or } \quad \begin{aligned}
y & \leqslant \sqrt{4-x^{2}} \\
x^{2}+y^{2} & \leqslant 4 \\
y & \geqslant x \\
y & \leftarrow 0 \quad(\text { or } y>0) \leftarrow 1
\end{aligned} ~ & \leftarrow \\
y & \leftarrow
\end{aligned}
$$

b) $\cos 240^{\circ}=-\cos 60^{\circ}=-\frac{1}{2}$,
c) i)

$$
\begin{aligned}
& 2 x=45^{\circ}, 315^{\circ}, 405^{\circ}, 675^{\circ} \\
& x=22.5^{\circ}, 157.5^{\circ}, 202.5^{\circ} 337.5^{\circ}
\end{aligned}
$$

$$
\begin{array}{r}
\text { ii) }(3 \sin x-1)(\sin x+1)=0 \\
\sin x=1 / 3 \quad \text { or } \sin x=-1 \\
x=\frac{19^{\circ} 28^{\prime}}{1,} \frac{160^{\circ} 32^{\prime}}{\pi}, \frac{\underbrace{\prime} 70^{\circ}}{\pi}
\end{array}
$$

d) i) Area shaded

$$
\begin{gathered}
=(12 \times 6)-\frac{1}{2} \cdot 4 x \cdot x- \\
\frac{1}{2} \cdot(12-4 x) \cdot 6 \\
=72-2 x^{2}-3(12-4 x) \\
=72-2 x^{2}-36+12 x \\
=36+12 x-2 x^{2}
\end{gathered}
$$

ii) Max. value of a quadratic of occurs
when $x=-\frac{b}{2 a}$
i.. $x=\frac{-12}{2 x-2}=3$
[must have clear working]
e) For pos. definite $a>0, \Delta<0$

$$
\begin{align*}
\Delta & =(k+2)^{2}-4(k-1) \cdot 4 \\
& =k^{2}+4 k+4-16 k+16 \\
& =k^{2}-12 k+20 \tag{1}\\
& =(k-2)(k-10)
\end{align*}
$$

$$
2<k<10
$$

but also $a=k-1>0$

$$
\begin{equation*}
k>1 \tag{1}
\end{equation*}
$$

\therefore Solution $2<k<10$ (i)

Q13.
a) $y=x^{3}-3 x$

$$
\frac{d y}{d x}=3 x^{2}-3
$$

$$
=3(2)^{2}-3 \text { when } x=2
$$

$$
\begin{equation*}
=9 \tag{1}
\end{equation*}
$$

Point of contact is $(2,2)$

$$
\begin{align*}
y-2 & =9(x-2) \\
y-2 & =9 x-18 \\
y & =9 x-16 \tag{1}
\end{align*}
$$

Q13 (cont)
b) 1) $\alpha+\beta=-\frac{b}{a}=\frac{5}{2}$
11) $\alpha \beta=\frac{c}{a}=\frac{-2}{2}=-1$
111) $(\alpha-2)(\beta-2)$

$$
\begin{align*}
& =\alpha \beta-2 \alpha-2 \beta+4 \\
& =\alpha \beta-2(\alpha+\beta)+4 \\
& =-1-2\left(\frac{5}{2}\right)+4 \\
& =-2 \tag{1}
\end{align*}
$$

C) 1

$$
\begin{align*}
A B & =\sqrt{(5+3)^{2}+(7-1)^{2}} \\
& =\sqrt{64+36} \\
& =\sqrt{100} \\
& =10 \text { units } \tag{1}
\end{align*}
$$

11) $d=\left|\frac{3(2)-4(-2)+7}{\sqrt{3^{2}+(-4)^{2}}}\right|$
(1)

$$
=\left|\frac{21}{5}\right|
$$

$$
\begin{equation*}
=\frac{21}{5} \text { units. } \tag{I}
\end{equation*}
$$

III)

$$
m_{B C}=\frac{7+2}{5-2}=\frac{9}{3}=3
$$

$A D / / B C$
w) $\therefore A D$ has $m=3$, and passes through $(-3,1)$ (1)

$$
\begin{aligned}
y-1 & =3(x+3) \\
y & =3 x+10
\end{aligned}
$$

v) At

D: $y=-2$

$$
\begin{align*}
-2 & =3 x+10 \tag{1}\\
3 x & =-12 \\
x & =-4
\end{align*}
$$

$$
\begin{equation*}
\therefore D(-4,-2) \tag{1}
\end{equation*}
$$

v1)

$$
\begin{align*}
& A_{1}=\frac{1}{2} \times 6 \times 3=9 \tag{1}\\
& A_{2}=\frac{1}{2} \times 10 \times \frac{21}{5}=21 \tag{1}
\end{align*}
$$

Total area $=30$ units 2
$\left[\begin{array}{l}\text { Also accept } 36 \text { unn }^{\prime}{ }^{2} \text {, beccause } \\ \text { given equation for } A^{\prime} \text { is incorrect }\end{array}\right]$
(Q14.
a) $y=x^{3}-2 x^{2}-4 x$
ii) $y^{\prime}=3 x^{2}-4 x-4=0$ for stationary pts.

$$
\left.\left.\begin{array}{l}
(3 x+2)(x-2)=0 \\
x=-\frac{2}{3} \\
y=40 / 27
\end{array}\right\} \begin{array}{l}
x=2 \\
y=-8
\end{array}\right\}
$$

$\left(-\frac{2}{3}, \frac{40}{27}\right)$ and $(2,-8)$ are stationary pts

$$
\begin{equation*}
y^{\prime \prime}=6 x-4 \tag{1}
\end{equation*}
$$

At $\left(-\frac{2}{3}, \frac{40}{27}\right) \quad y^{\prime \prime}=6\left(-\frac{2}{3}\right)-4=-4-4<0$
\therefore Maximum turning pt
At $(2,-8) \quad y^{\prime \prime}=6(2)-4=12-4>0$
\therefore minimum turning pt.
ii) For a $P O /, y^{\prime \prime}=0$ and charges sign

$$
\begin{equation*}
y^{\prime \prime}=6 x-4=0 \text { when } x=\frac{2}{3}, y=-\frac{88}{27} \tag{1}
\end{equation*}
$$

$\therefore\left(\frac{2}{3},-\frac{88}{27}\right)$ is a possible pol
Now check

x	0	$\frac{2}{3}$	1
$y^{\prime \prime}$	-4	0	+2
	\uparrow		\uparrow

Sign/ concavity changes

6(0)-4
$6(1)-4$
$\therefore\left(\frac{2}{3},-\frac{88}{27}\right)$ is a Pol

$$
F(i)
$$

III)

b) i) $\ln \triangle A B X, \triangle D C X$
$\angle A X B=\angle D X C$ (vertically opposite $\angle s$ equal)
$\angle B A X=\angle X C D$ (alternate $\angle s, A B \| D C$)
$\triangle A B \times I I I \triangle D C X$ (matching $\angle s$ equal)
11)

$$
\begin{aligned}
& \frac{D x}{x}=\frac{C x}{y}=\frac{k}{1} \quad\binom{\text { matchingsides of similar }}{\Delta s \text { proportional }}_{\leftarrow(1)} \\
& \therefore D x=k x \text { and } C x=k y
\end{aligned}
$$

III)

$$
\begin{aligned}
A D^{2} & =(k x)^{2}+y^{2}-2 \cdot k x \cdot y \cdot \cos \theta \\
& =k^{2} x^{2}+y^{2}-2 k x y \cos \theta
\end{aligned}
$$

Use cosine Rule (1)
$\angle B X C=\theta$ (vertically opposite Ls equal)

$$
\begin{align*}
B C^{2} & =(k y)^{2}+x^{2}-2 \cdot k y \cdot x \cdot \cos \theta \\
& =k^{2} y^{2}+x^{2}-2 k \cdot x y \cos \theta \tag{2}
\end{align*}
$$

subtracting, (1) (2)

$$
\begin{equation*}
A D^{2}-B C^{2}=k^{2} x^{2}+y^{2}-k^{2} y^{2}-x^{2} \tag{1}
\end{equation*}
$$

Subtracting

$$
\left.\begin{array}{l}
=\left(k^{2}-1\right) x^{2}+\left(1-k^{2}\right) y^{2} \\
=\left(k^{2}-1\right) x^{2}-\left(k^{2}-1\right) y^{2} \\
=\left(k^{2}-1\right)\left(x^{2}-y^{2}\right)
\end{array}\right\} \dot{(1)}
$$

iv)

$$
\text { v) } \begin{aligned}
D B^{2} & =(k x+x)^{2} \\
& =(x(k+1))^{2} \\
& =x^{2}(k+1)^{2} \\
A C^{2} & =(y+k y)^{2} \\
& =(y(1+k))^{2} \\
& =y^{2}(k+1)^{2} \\
\therefore D B^{2}-A C^{2} & =(k+1)^{2} x^{2}-(k+1)^{2} y^{2} \\
& =(k+1)^{2}\left(x^{2}-y^{2}\right)
\end{aligned}
$$

$$
\text { Ratio required }=\frac{\left(k^{2}-1\right)\left(x^{2}-y^{2}\right)}{(k+1)^{2}\left(x^{2}-y^{2}\right)}
$$

Find $D B^{2}$ or $A C^{2}$
(1)

$$
=\frac{(k-1)(k+1)}{(k+1)^{2}}
$$

$$
=\frac{k-1}{k+1}
$$

Answer - fully (1)

