

BAULKHAM HILLS HIGH SCHOOL

2014
YEAR 11 YEARLY

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks - 70

This paper consists of TWO sections.

Section 1 - Multiple Choice 10 marks

Section 2 - Extended Response 60 marks
Attempt all questions
Start a new page for each question

Section 1 -Multiple Choice (10 marks)

Attempt all questions.

Answer the following on the booklet provided.

1 The number 0.09095 rounded to 2 significant figures is :
(A) 0.10
(B) 0.09
(C) 0.091
(D) 0.0910

2 Simplify $5 \sqrt{3}+\sqrt{20}-2 \sqrt{12}+\sqrt{45}$
(A) $\sqrt{5}-\sqrt{3}$
(B) $\sqrt{5}+\sqrt{3}$
(C) $5 \sqrt{5}+9$
(D) $5 \sqrt{5}+\sqrt{3}$

3 If α and β are the roots of $15 x^{2}+75 x-3=0$, then $\alpha+\beta$ is:
(A) 75
(B) 5
(C) $-\frac{1}{5}$
(D) -5

4 A possible answer to the size of $\angle C$ in the triangle shown is :

(A) $140^{\circ} 27^{\prime}$
(B) $0^{\circ} 10^{\prime}$
(C) $37^{\circ} 8^{\prime}$
(D) none of these answers

5 What is the value of k if the expression $4 x^{2}-6 x+k$ is a perfect square ?
(A) $\frac{4}{9}$
(B) $\frac{9}{4}$
(C) 4
(D) 9

6 The shaded region shown satisfies

(A) $x+2 \geq 2 y$ and $x+2 y>2$
(B) $x+2 \geq 2 y$ and $x+2 y<2$
(C) $x+2 \leq 2 y$ and $x+2 y>2$
(D) $x+2 \leq 2 y$ and $x+2 y<2$

7 If $2 \cos x=\sqrt{3}$ in the domain $-180^{\circ} \leq x \leq 180^{\circ}$ then the values of x are :
(A) $-60^{\circ}, 60^{\circ}$
(B) $-120^{\circ}, 120^{\circ}$
(C) $-30^{\circ}, 30^{\circ}$
(D) $30^{\circ}, 150^{\circ}$

8 The graph illustrated could be :

(A) $y=2^{x}$
(B) $y=(-2)^{x}$
(C) $y=\left(\frac{1}{2}\right)^{x}$
(D) $y=-2^{-x}$

9 The area of a rectangle with sides x and y is $47 \mathrm{~cm}^{2}$. The perimeter can be represented by:
(A) $P=x+47 x^{2}$
(B) $P=x+\frac{47}{x}$
(C) $P=2 x+\frac{94}{x}$
(D) $y=2 x+\frac{47}{x}$

10 Find the domain over which the curve $y=x^{3}+3 x^{2}-24 x+7$ is concave downwards.
(A) $x<-1$
(B) $-4<x<2$
(C) $x>-1$
(D) $x<-4, x\rangle 2$

All necessary working should be shown in every question.

Question 11 (15 marks) - Start on the appropriate page in your answer booklet
a) Solve $|1-3 x|>13$
b) Find a and b such that

$$
(\sqrt{3}+4)^{2}=a+b \sqrt{3}
$$

c) For the function $y=\sqrt{9-x^{2}}$
(i) What is the domain and range ?
(ii) Is the function odd, even or neither?
(Justify your answer by showing working)
d) The directrix of a parabola is the x axis and the focus is the point $(1,4)$.

Find the equation of the parabola.
e) Find the equation of the normal to the curve $y=2 x^{2}-5 x+1$ at the point where $x=2$.
f) Solve the pair of simultaneous equations

$$
\begin{gathered}
2 x-y-7=0 \\
x+y+1=0
\end{gathered}
$$

a) Simplify $\frac{2 x^{3}-16 y^{3}}{x^{2}+2 x y+4 y^{2}}$

2
b) Differentiate
(i) $\frac{2 x+1}{x-1}$
(ii) $x \sqrt{x}$
c) The function $y=f(x)$ is given by

$$
f(x)=3 x(2 x-1)^{2}
$$

(i) Find the coordinates of the points where the curve $y=f(x)$ cuts the x axis.
(ii) Find the coordinates of any stationary points on the curve $y=f(x)$ and determine their nature.
(iii) Find any points of inflection.
(iv) Sketch the curve $y=f(x)$ in the domain $-1 \leq x \leq 2$.
(v) Hence find the maximum value for $y=f(x)$ in the given domain.

End of Question 12

a) The quadratic equation, $P(x)$, is given by $P(x)=x^{2}-2(k-3) x+(k-1)$
(i) Find the value(s) of k for which $P(x)=0$ has distinct real roots.
(ii) Explain what it means to the curve if $y=P(x)$ had been described as positive definite.
b) In the diagram $A B=9 \mathrm{~cm}, B C=6 \mathrm{~cm}, A D=8 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$.

(i) Find the size of $\angle A B C$, to the nearest degree.
(ii) Find the area of $\triangle A B C$, to one decimal place.
(iii) Given that $\angle A B C=\angle D A C$, prove that $\triangle A B C$ is similar to $\triangle C A D$.
(iv) Hence find the ratio of the area of $\triangle A B C$ to the area of $\triangle D A C$
c) Prove that

$$
\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=\sin \theta+\cos \theta
$$

Question 14 (15 marks) - Start on the appropriate page in your answer booklet

a) Simplify

$$
x^{-1} y^{2}\left(x^{\frac{1}{2}}-y^{-1}\right)\left(x^{\frac{1}{2}}+y^{-1}\right) \text { giving your answer with positive indices. }
$$

b) Given $3 x^{2}+4 x+5 \equiv A(x+1)^{2}+B(x+1)+C$, find the value of the constants A, B and C.
c) The line through $A(3,5)$ and $B(-2,2)$ is parallel to the line $l, 3 x-5 y-8=0$

(i) Show that the equation of $A B$ is $3 x-5 y+16=0$
(ii) $\quad C$ is the point $(1,-1)$ on line l. Find the perpendicular distance of C from the line joining A and B.
(iii) Find the area of the triangle formed by the points A, B and C.
(iv) Explain why the area of the triangle $A B C$ is constant, regardless of the position of C on the line l.
d) A sphere contains a cone of height, h with its vertex at the centre of the sphere. The radius of the sphere is 12 cm .

(i) Show that the volume of the cone is $V=\frac{\pi}{3}\left(144 h-h^{3}\right)$
(ii) Given that the volume of the sphere is V_{s},
show that the maximum volume of the cone is $\frac{\sqrt{3}}{18} \times V_{s}$

End of Examination

Question 12 (15 marks)
ai)

$$
\begin{aligned}
\frac{2 x^{3}-16 y^{3}}{x^{2}+2 x y+4 y^{2}} & =\frac{2\left(x^{3}-8 y^{3}\right)}{x^{2}+2 x y+4 y^{2}} \\
& =\frac{(x-2 y)\left(x^{2}+2 x y+4 y^{2}\right)}{x^{2}+2 x y+4 y^{2}} \\
& =2(x-2 y)
\end{aligned}
$$

3) i

$$
\text { i) } \begin{aligned}
y & =\frac{2 x+1}{x-1} \\
\frac{d y}{d x} & =\frac{(x-1)(2)-(2 x+1) \times 1}{(x-1)^{2}} \\
& =\frac{2 x-2-2 x-1}{(x-1)^{2}} \\
& =\frac{-3}{(x-1)^{2}}
\end{aligned}
$$

(1) correct factorising
(1) answer
(1) applying
ii)

$$
\begin{aligned}
y & =x \sqrt{x}=x^{\frac{3}{2}} \\
\frac{d y}{d x} & =\frac{3}{2} x^{\frac{1}{2}} \text { or } \frac{3 \sqrt{x}}{2}
\end{aligned}
$$

-) $y=f(x)=3 x(2 x-1)^{2}$
i)

$$
\begin{aligned}
f(x)=0 & -x \text { intercepts } \\
3 x(2 x-1)^{2} & =0 \\
x & =0, \frac{1}{2} . \quad\left[(0,0)\left(\frac{1}{2}, 0\right)\right]
\end{aligned}
$$

ii) Stat. pts.

$$
\begin{aligned}
f(x) & =3 x(2 x-1)^{2} \\
f^{\prime}(x) & =3(2 x-1)^{2}+3 x \times 4(2 x-1) \\
& =3(2 x-1)(2 x-1+4 x) \\
& =3(2 x-1)(6 x-1)
\end{aligned}
$$

$f^{\prime}(x)=0$ for stat pts

$$
\begin{aligned}
\therefore(2 x-1)(6 x-1) & =0 \\
x & =\frac{1}{6}, \frac{1}{2} .
\end{aligned}
$$

c) ii) Cont.

$$
\begin{aligned}
f^{\prime \prime}(x) & =6(6 x-1)+3 \times 6(2 x-1) \\
& =36 x-6+36 x-18 \\
& =72 x-24 .
\end{aligned}
$$

$$
\begin{array}{|l|l|}
x=\frac{1}{6} & x=\frac{1}{2} \\
\hline y=3 \times \frac{1}{6}\left(2 \times \frac{1}{6}-1\right)^{2} & y=3 \times \frac{1}{2}\left(2 \times \frac{1}{2}-1\right)^{2} \\
=0.22 & \left(\frac{1}{2}, 0\right) \\
\left(\frac{1}{6}, 0.22\right) & \text { text: } \\
\text { test: } & f^{\prime \prime}\left(\frac{1}{2}\right)=72 \times \frac{1}{2}-24 \\
f^{\prime \prime}\left(\frac{1}{6}\right)=72 \times \frac{1}{6}-24 & =12 \\
=-12<0 & >0 \mathrm{~min} \\
\text { max. } & \left(\frac{1}{6}, 0.22\right) \text { min }
\end{array}
$$

iii) P.O.I.

$$
\begin{aligned}
& f^{\prime \prime}(x)=72 x-24=0 \\
& x=\frac{1}{3} \quad y=3 \times \frac{1}{3}\left(2 \times \frac{1}{3}-1\right)^{2} \\
&=0.11 \\
&\left(\frac{1}{3}, 0.11\right)
\end{aligned}
$$

Test:

$$
f^{\prime \prime}\left(\frac{1}{6}\right)=-12<0 \quad f^{\prime \prime}\left(\frac{1}{2}\right)=12>0
$$

\therefore a change in concavity.
iv)
quotient rule
(1) answer.
(1) for correctly testing both points
(1) for correct POI and reason
(1) for end points
(1) clear diagram
(1) correct differentiation
(1) two correct points.

Question 13 (15 marks)
2) $P(x)=x^{2}-2(k-3) x+(k-1)$

$$
\begin{gathered}
\text { i) } \Delta=b^{2}-4 a c>0 \\
\therefore(-2(k-3))^{2}-4 \times(k-1)>0 \\
4 k^{2}-24 k+36-4 k+4>0 \\
4 k^{2}-28 k+40>0 \\
k^{2}-7 k+10>0 \\
(k-5)(k-2)>0 \\
\therefore k<2 \text { or } k>5
\end{gathered}
$$

(1) forming quadratic
(1) correct. solution
ii) positive def $\Delta<0$

The curve $y=P(x)$ would be concave up and completely above the x axis
(1) logical explanation 3
b) i) $A \hat{B} C$

$$
\begin{aligned}
\cos B & =\frac{a^{2}+c^{2}-b^{2}}{2 \times a \times c} \\
& =\frac{9^{2}+6^{2}-12^{2}}{2 \times 9 \times 6} \\
& =\frac{-27}{108}
\end{aligned}
$$

B in and quad.

$$
\begin{aligned}
B & =180-75.52^{\circ} \\
& =104^{\circ} \text { (nearest degree) }
\end{aligned}
$$

ii) $A_{\triangle A B C}=\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& =\frac{1}{2} \times 9 \times 6 \times \sin 104^{\circ} \\
& =26.197 \ldots \\
& =26.2 \mathrm{~cm}^{2} .
\end{aligned}
$$

(1) applying cosine rule correctly.
(1) correct angle
(1) applying area formula.
(1) correct answer.
13. b) i ii)

In $\triangle A B C$ and $\triangle C A D$

$$
\left.\begin{array}{l}
\frac{B C}{A D}=\frac{6}{8}=\frac{3}{4} \\
\frac{B A}{A C}=\frac{9}{12}=\frac{3}{4}
\end{array}\right\} \begin{aligned}
& \text { same } \\
& \text { rato }
\end{aligned}
$$

$\therefore \triangle A B C \| \triangle C A D(2$ pairs of sides in ratio included L equal)
iv) $A_{\triangle A B C}$: $A_{\triangle D A C}$
since $\frac{S_{1}}{S_{2}}=\frac{3}{4}$ (ratio found in proof)
(1) establishing ratios.

$$
\angle D A C=\angle A B C \text { (given) }
$$

(1) angle.
(1) reason
then $\quad \frac{A_{1}}{A_{2}}=\frac{S_{1}{ }^{2}}{S_{2}{ }^{2}}$

$$
=\frac{9}{16}
$$

$13 \mathrm{c})$

FAlm: prove

$$
\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}=\sin \theta+\cos \theta
$$

$$
\angle H S=\frac{\cos \theta}{1-\tan \theta}+\frac{\sin \theta}{1-\cot \theta}
$$

$=\frac{\cos \theta}{\frac{\cos \theta-\sin \theta}{\cos \theta}}+\frac{\sin \theta}{\frac{\sin \theta-\cos \theta}{\sin \theta}}$
$=\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}+\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}$
$=\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta}-\frac{\sin ^{2} \theta}{\cos \theta-\sin \theta}$
$=(\cos \theta+\sin \theta)(\cos \theta-\sin \theta)$
$\cos \theta+\sin \theta$
$=\cos \theta+\sin \theta$
$=$ RHS

$$
\begin{aligned}
& \text { Question } 14(15 \text { marks }) \\
& x^{-1} y^{2}\left(x^{\frac{1}{2}}-y^{-1}\right)\left(x^{\frac{1}{2}}+y^{-1}\right)=\frac{y^{2}}{x}\left(x-y^{-2}\right) \\
&=\frac{y^{2}}{x}\left(x-\frac{1}{y^{2}}\right) \\
&=\frac{y^{2}}{x}\left(\frac{x y^{2}-1}{y^{2}}\right) \\
&=\frac{x y^{2}-1}{x}
\end{aligned}
$$

b) $3 x^{2}+4 x+5 \equiv A(x+1)^{2}+B(x+1)+C$

RHS $=A x^{2}+2 A x+A+B x+B+C$

$$
=A x^{2}+x(2 A+B)+A+B+C
$$

$$
\begin{array}{rlrl}
& =A x^{2}+x & 2 & =A+B+C \\
\therefore 3 & =A & 4 & =2 A+B \quad 5
\end{array}
$$

$$
4=6+B \quad 5=3-2+C
$$

$$
B=-2 \quad 4=C
$$

(1) linking

LHS to RHS
(concluding proof)

(1) off each error.	Question 14 (15 marks) a) $\begin{aligned} x^{-1} y^{2}\left(x^{\frac{1}{2}}-y^{-1}\right)\left(x^{\frac{1}{2}}+y^{-1}\right) & =\frac{y^{2}}{x}\left(x-y^{-2}\right) \\ & =\frac{y^{2}}{x}\left(x-\frac{1}{y^{2}}\right) \\ & =\frac{y^{2}}{x}\left(\frac{x y^{2}-1}{y^{2}}\right) \\ & =\frac{x y^{2}-1}{x} \end{aligned}$	(1) correctly expanding brackets (1) correct final line.
	$\begin{aligned} & \text { b) } 3 x^{2}+4 x+5 \equiv A(x+1)^{2}+B(x+1)+C \\ & \text { RHS }=A x^{2}+2 A x+A+B x+B+C \\ & =A x^{2}+x(2 A+B)+A+B+C \\ & \therefore 3=A \quad 4=2 A+B \quad 5=A+B+C \\ & 4=6+B \quad 5=3-2+C \\ & B=-2 \quad 4=C \\ & \therefore A=3, B=-2, C=4 . \end{aligned}$	(2) for 3 correct values. (1) for setting up equations and finding I correct value
(1) linking LHS to RHS (concluding proof) max 3 marks.	c) $A B$. $(-2,2)$ d) $\begin{aligned} n & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & & y-y_{1}=m\left(x-x_{1}\right) \\ & =\frac{5-2}{3+2} & & 5 y-10=3 x+\frac{3}{5}(x+2) \\ & =\frac{3}{5} & & 3 x-5 y+16=0 . \end{aligned}$ $\text { ii) perp } d=\left\|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right\|$ $=\left\|\frac{3 \times 1-5 x-1+16}{\sqrt{9+25}}\right\|$ $=\left\|\frac{3+5+16}{\sqrt{34}}\right\|$ $=\frac{24}{\sqrt{3 v}} \text { units }$	(1) for establishing the equation (1) correctly substitute. into formula. (1) correct answer.

c.

$$
\begin{aligned}
\text { dist }_{A B} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{25+9} \\
& =\sqrt{34} \text { units } \\
A_{\Delta} & =\frac{1}{2} b h \\
& =\frac{1}{2} \times \sqrt{34} \times \frac{24}{\sqrt{34}} \\
& =12 v^{2}
\end{aligned}
$$

(1) dist $A B$
(1) correct Area.
iv) The line l, is a fixed distance from $A B$ as it is parallel to $A B$. Therefore the perpendicular height is fixed and the base is fisied as A to $B \therefore$ Area is constant.
d.)
i)

$$
\begin{aligned}
h^{2}+r^{2} & =12^{2} \\
r^{2} & =144-h^{2}
\end{aligned}
$$

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{\pi}{3}\left(144-h^{2}\right) h \\
& =\frac{\pi}{3}\left(144 h-h^{3}\right)
\end{aligned}
$$

ii) $V_{S}=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi \times 12^{3} \\
& =2304 \pi .
\end{aligned}
$$

$$
V_{\text {cone }}=\frac{\pi}{3}\left(144 h-h^{3}\right)
$$

$$
\frac{d V_{c}}{d h}=\frac{\pi}{3}\left(144-3 h^{2}\right) \quad \frac{d^{2} v}{d h^{2}}=\frac{\pi}{3}(-6 h)
$$

now $\frac{d V}{d h}=0$

$$
\begin{aligned}
\frac{\pi}{3}\left(144-3 h^{2}\right) & =0 \\
144 & =3 h^{2}
\end{aligned}
$$

(1) correct derivative of V_{c}.

$$
\begin{aligned}
& h^{2}=48 \\
& h= \pm \sqrt{48}
\end{aligned}
$$

now $h>0$

$$
\begin{aligned}
\therefore h & =\sqrt{48} \\
& =4 \sqrt{3} . \mathrm{cm}
\end{aligned}
$$

Test for max.

$$
\begin{aligned}
\frac{d^{2} V}{d h^{2}} & =\frac{\pi}{3}(-6 h) \\
& =\frac{\pi}{3}(-6 \times 4 \sqrt{3})<0 \\
& \therefore \text { max. } \\
\therefore V_{c} & =\frac{\pi}{3}\left(144 h-h^{3}\right) \\
& =\frac{\pi}{3}\left(144 \times 4 \sqrt{3}-(4 \sqrt{3})^{3}\right) \\
& =\frac{\pi}{3}(576 \sqrt{3}-192 \sqrt{3}) \\
& =\frac{\pi}{3} \times 384 \sqrt{3} \\
& =128 \sqrt{3} \pi \\
\therefore V_{s} & =2304 \pi \\
\frac{\sqrt{3}}{18} \times V_{s} & =\frac{2304 \pi \times \sqrt{3}}{18} \\
& =128 \sqrt{3} \pi=V_{c} .
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{V_{c}}{V_{S}} & =\frac{128 \sqrt{3} \pi}{2304 \pi} \\
& =\frac{128 \sqrt{3}}{2304} \\
& =\frac{\sqrt{3}}{18} .
\end{aligned}
$$

(1) finding concluding Volume ratio.

