

BAULKHAM HILLS HIGH SCHOOL

2014 YEAR 11 YEARLY

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- All necessary working should be shown in every question
- Marks may be deducted for careless or badly arranged work
- Attempt all questions

Total marks – 70

This paper consists of TWO sections.

Section 1 – Multiple Choice 10 marks

Section 2 – Extended Response 60 marks Attempt all questions Start a new page for each question

Section 1 –Multiple Choice (10 marks) Attempt all questions.

Answer the following on the booklet provided.									
1	The number 0.09095 rounded to 2 significant figures is :								
	(A) 0.10	(B) 0.09	(C) 0.091	(D) 0.0910					
2	Simplify $5\sqrt{3} + \sqrt{3}$	$\sqrt{20} - 2\sqrt{12} + \sqrt{45}$							
	(A) $\sqrt{5} - \sqrt{3}$	$(B)\sqrt{5}+\sqrt{3}$	(C) $5\sqrt{5} + 9$	(D) $5\sqrt{5} + \sqrt{3}$					
3	If α and β are the	is :							
	(A) 75	(B) 5	$(C) - \frac{1}{5}$	(D) -5					
4	A possible answer to the size of $\angle C$ in the triangle shown is :								
		Not to	o scale C 4	cm					
		A 18°34	4'8 cm	B					
	(A) 140°27′	(B) $0^{\circ}10'$	(C) 37°8′	(D) none of these answers					
5	What is the value of	of k if the expression 4	$4x^2 - 6x + k$ is a perf	ect square ?					
	$(A)\frac{4}{9}$	(B) $\frac{9}{4}$	(C) 4	(D) 9					
6 The shaded region shown satisfies									
			y 3∱						
			2 x+2=2y						
		x + 2y = 2							
		x + 2y = 2							
		x+2y=2	-1 1 2	3 ×					
		x+2y=2	-1 1 2 -1 -2	×					
		x + 2y = 2	-1 1 2 -1 -2 -3	x					
	(A) $x + 2 \ge 2y$ a	x + 2y = 2 x^{-2} and $x + 2y > 2$	$ \begin{array}{ccccc} -1 & 1 & 2 \\ & -1 & & \\ & -2 & & \\ & -3 & & \\ \end{array} $ (B) $x + 2 \ge 2y$	$x^{-3} x^{-1}$ and $x + 2y < 2$					
	(A) $x + 2 \ge 2y$ a (C) $x + 2 \le 2y$ a	x + 2y = 2 and $x + 2y > 2$ and $x + 2y > 2$	$ \begin{array}{cccc} -1 & 1 & 2 \\ & -1 & & \\ & -2 & & \\ & -2 & & \\ & -3 & & \\ \end{array} $ (B) $x + 2 \ge 2y$ (D) $x + 2 \le 2y$	$x = \frac{3}{x}$ x = x + 2y < 2 x = x + 2y < 2 x = x + 2y < 2					

7 If $2\cos x = \sqrt{3}$ in the domain $-180^{\circ} \le x \le 180^{\circ}$ then the values of *x* are : (A) $-60^{\circ}, 60^{\circ}$ (B) −120°, 120° (C) $-30^{\circ}, 30^{\circ}$ (D) 30°, 150° 8 The graph illustrated could be : x (A) $y = 2^x$ (B) $y = (-2)^x$ (C) $y = \left(\frac{1}{2}\right)^{x}$ (D) $y = -2^{-x}$ The area of a rectangle with sides x and y is 47 cm^2 . The perimeter can be represented by: 9 (A) $P = x + 47x^2$ (B) $P = x + \frac{47}{x}$ (C) $P = 2x + \frac{94}{x}$ (D) $y = 2x + \frac{47}{x}$ Find the domain over which the curve $y = x^3 + 3x^2 - 24x + 7$ is concave downwards. 10 (A) x < -1(B) -4 < x < 2(C) x > -1(D) x < -4, x > 2**End of Section I**

Section II – Extended Response All necessary working should be shown in every question.

Question 11 (15 marks) - Start on the appropriate page in your answer booklet			
a)	Solve $ 1 - 3x > 13$	2	
b)	Find <i>a</i> and <i>b</i> such that $(\sqrt{3} + 4)^2 = a + b\sqrt{3}$	2	
c)	For the function $y = \sqrt{9 - x^2}$		
	(i) What is the domain and range ?	2	
	(ii) Is the function odd, even or neither?(Justify your answer by showing working)	2	
d)	The directrix of a parabola is the x axis and the focus is the point (1, 4). Find the equation of the parabola.	2	
e)	Find the equation of the normal to the curve $y = 2x^2 - 5x + 1$ at the point where $x = 2$.	3	
f)	Solve the pair of simultaneous equations 2x - y - 7 = 0 x + y + 1 = 0	2	
	End of Question 11		

Question 12 (15 marks) - Start on the appropriate page in your answer booklet			Marks
a)	Simplify	$\frac{2x^3 - 16y^3}{x^2 + 2xy + 4y^2}$	2
b)	Differen (i) (ii)	tiate $\frac{2x+1}{x-1}$ $x\sqrt{x}$	2 2
c)	The function $y = f(x)$ is given by		
		$f(x) = 3x(2x-1)^2$	
	(i)	Find the coordinates of the points where the curve $y = f(x)$ cuts the x axis.	2
	(ii)	Find the coordinates of any stationary points on the curve $y = f(x)$ and determine their nature.	3
	(iii)	Find any points of inflection.	1
	(iv)	Sketch the curve $y = f(x)$ in the domain $-1 \le x \le 2$.	2
	(v)	Hence find the maximum value for $y = f(x)$ in the given domain.	1
		End of Question 12	

Question 14 (15 marks) - Start on the appropriate page in your answer booklet		
a)	Simplify $x^{-1}y^2(x^{\frac{1}{2}}-y^{-1})(x^{\frac{1}{2}}+y^{-1})$ giving your answer with positive indices.	2
b)	Given $3x^2 + 4x + 5 \equiv A(x+1)^2 + B(x+1) + C$, find the value of the constants <i>A</i> , <i>B</i> and <i>C</i> .	
c)	The line through $A(3, 5)$ and $B(-2, 2)$ is parallel to the line $l, 3x - 5y - 8 = 0$ Not to scale B(-2, 2)y B(-2, 2)y B(-2, 2)y B(-2, 2)y B(-2, 2)y A(3, 5)y A(3,	1
	 (ii) <i>C</i> is the point (1, -1) on line <i>l</i>. Find the perpendicular distance of <i>C</i> from the line joining <i>A</i> and <i>B</i>. (iii) Find the area of the triangle formed by the points <i>A</i>. <i>B</i> and <i>C</i>. 	2 2
	(iv) Explain why the area of the triangle ABC is constant, regardless of the position of C on the line l.	1
d)	A sphere contains a cone of height, h with its vertex at the centre of the sphere. The radius of the sphere is 12cm. Not to scale (i) Show that the volume of the cone is $V = \frac{\pi}{3}(144h - h^3)$ (ii) Given that the volume of the sphere is V_s , show that the maximum volume of the cone is $\frac{\sqrt{3}}{18} \times V_s$	1 4
	End of Examination	

$$\frac{13 \text{ S}}{1 + 3 \text{ the } 1 + 6 \text{ show } 1$$

$$\begin{aligned} \sum_{k=1}^{2m} \frac{1}{(2k-k)^{k} + (y-y)^{k}} \\ = \frac{1}{15} + 49 \\$$