

BAULKHAM HILLS HIGH SCHOOL

Mathematics

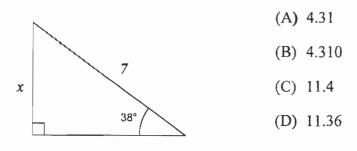
General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- In Questions 11–14, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work

Total marks – 70 Exam consists of 8 pages.

This paper consists of TWO sections.

Section 1 – Page 2-5 (10 marks)

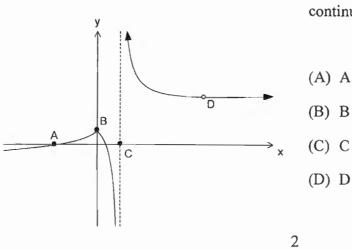

- Attempt Question 1-10
- Allow about 15 minutes for this section

Section II – Pages 5-8 (60 marks)

- Attempt questions 11-14
- Allow about 1 hours and 45 minutes for this section

Answer the following on the booklet provided.

1 The value of x to 3 significant figures is:



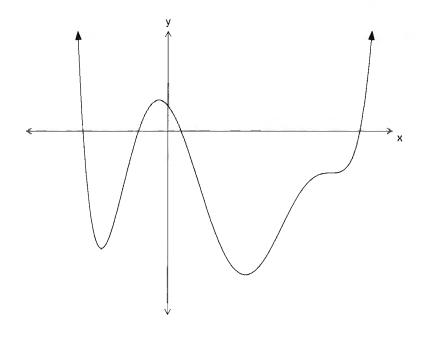
- 2 Which of the following is equal to $\frac{1}{2\sqrt{5}-\sqrt{3}}$?
 - (A) $\frac{2\sqrt{5}-\sqrt{3}}{7}$ (B) $\frac{2\sqrt{5}+\sqrt{3}}{7}$ (C) $\frac{2\sqrt{5}-\sqrt{3}}{17}$

(D)
$$\frac{2\sqrt{5}+\sqrt{3}}{17}$$

- 3 The quadratic equation $3x^2 x 4 = 0$ has roots α and β : What is the value of $12\alpha + 12\beta$?
 - (A) **-16**
 - (B) -4
 - (C) 4
 - (D) 16

At which of the following points is the function continuous but not differentiable?

- 5 The function $f(x) = \frac{x^2 1}{x}$ is :
 - (A) an even function
 - (B) an odd function
 - (C) neither odd nor even function
 - (D) a zero function


6

Which inequality defines the domain of the function $f(x) = \frac{1}{\sqrt{x+3}}$?

- (A) x > -3
- (B) $x \ge -3$
- (C) x < -3
- (D) $x \leq -3$
- 7 What is the solution for $x^2 > 4$?
 - (A) $x > \pm 2$
 - (B) x < -2 or x > 2
 - (C) x < 2 or x > -2
 - (D) -2 < x < 2

8 Which expression is the correct simplification of $\frac{9^{2x}}{3^{x}}$?

- (A) 6²
- (B) 3⁴
- (C) 3^x
- (D) 3^{3x}

How many points of inflection are on the graph?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- 10 If $f(x) = a^x + a^{-x}$, then $[f(x)]^2 = :$
 - (A) 1 f(2x)(B) 1 + f(2x)(C) 2 - f(2x)
 - (D) 2 + f(2x)

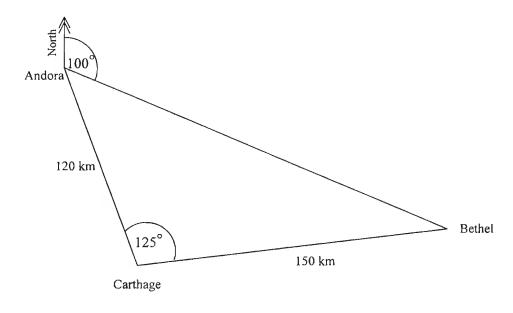
End of Section 1

Que	estion 11 (15 marks) - Start on the appropriate page in your answer booklet	Marks
a)	Simplify $3\sqrt{2} + 3\sqrt{18} - \sqrt{8}$	2
b)	Factorise $2x^3 - 16y^3$	2
c)	Expand and simplify $5m(m-7) - (m-1)^2$	2
d)	Draw a neat sketch of $y = 3^{-x} + 1$ showing all important features.	2
e)	Find the perpendicular bisector of the points $(1, -2)$ and $(3, -8)$ leaving your answer in general form.	3
f)	If $f(x) = (3x - 1)^4$, find $f'(2)$.	2
g)	Find the equation of the tangent to the curve $y = x^2 + 3x$ at the point (1,4)	2

End of Question 11

,

.


Question 12 (15 marks) - Start on the appropriate page in your answer booklet

a) Find the values of P, Q and R if $3x^2 + 5x - 1 \equiv P(x+1)^2 + Q(x+1) + R$ 2

- b) Find the value(s) of k in the equation $(k-1)x^2 + (2k+1)x 2 = 0$ so that it has equal roots 2
- c) Differentiate

(i)
$$7x^4 - 3x + 1$$

(ii) $\frac{2x+3}{(x-1)^2}$
(iii) $\frac{3x+5}{1-x^2}$
2

d) The diagram below shows the relative positions of three towns called Andora, Bethel and Carthage.

- (i) Copy the diagram into your booklet.
 Calculate the distance from Andora to Bethel to the nearest kilometre.
 2
- (ii) Given the bearing of Bethel from Andora is 100°, find the true bearing of Andora from Carthage to the nearest degree 2
- e) Solve for x if $0^{\circ} \le x \le 360^{\circ}$

$$2\sin x = \tan x$$

2

End of Question 12

Marks

Question 13 (15 marks) - Start on the appropriate page in your answer booklet

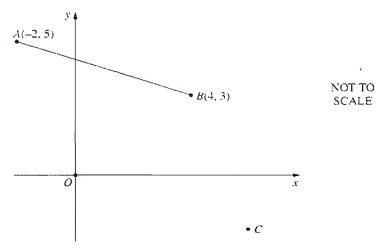
120°

a) If α and β are roots of the equation $2x^2 - 4x + 1 = 0$ Find the value of

(i)
$$\alpha + \beta$$

(ii) $\alpha\beta$
(iii) $\frac{1}{\alpha} + \frac{1}{\beta}$
1

B


b)

D C EThe diagram shows a parallelogram ABCD with $\angle DAB = 120^{\circ}$. The side DC is produced to E so that AD = BE.

Copy or trace the diagram into your writing booklet.

Prove that $\triangle BCE$ is equilateral.

c)

The diagram shows the points A(-2, 5), B(4, 3) and O(0, 0). The point C is the fourth vertex of the parallelogram *OABC*.

(i)	Show that the equation of AB is $x + 3y - 13 = 0$.	2
(ii)	Show that the length of AB is $2\sqrt{10}$.	1
(iii)	Calculate the perpendicular distance from O to the line AB .	2
(iv)	Find the coordinates of C	1
(v)	Calculate the area of parallelogram OABC.	1
(vi)	Hence or otherwise, find the perpendicular distance from O to the line BC	2

End of Question 13

7

Marks

Question 14 (15 marks) - Start on the appropriate page in your answer booklet

a) Prove that

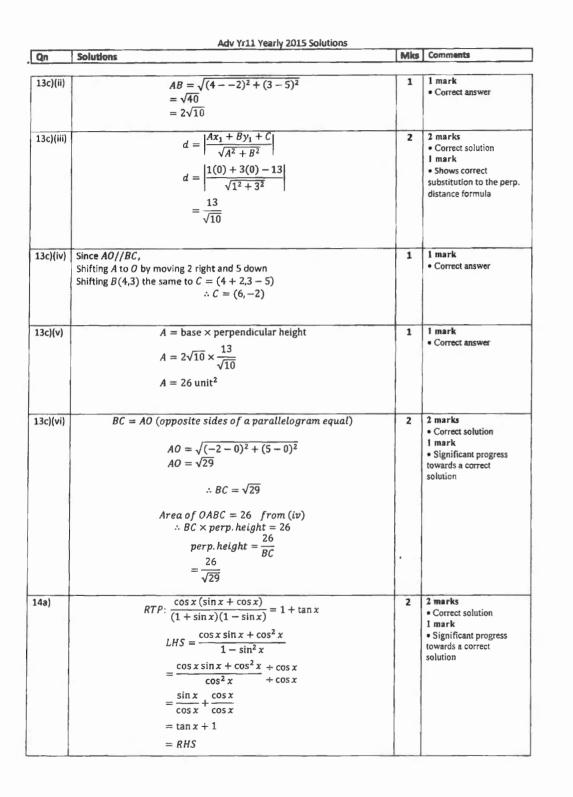
$$\frac{\cos x (\sin x + \cos x)}{(1+\sin x)(1-\sin x)} = 1 + \tan x$$

- b) Consider the function $f(x) = x^4 4x^3$.
 - (i) Show that $f'(x) = 4x^2(x-3)$ 1
 - (ii) Find the coordinates of the stationary points of the curve y = f(x), and 3 determine their nature.
 - (iii) Sketch the graph of the curve y = f(x), showing the stationary points and 2 intercepts. 2
 - (iv) Find the values of x for which the graph y = f(x) is concave down. 2
- c) An open cylindrical can with radius r and height h is made so that its surface area is 300π cm².

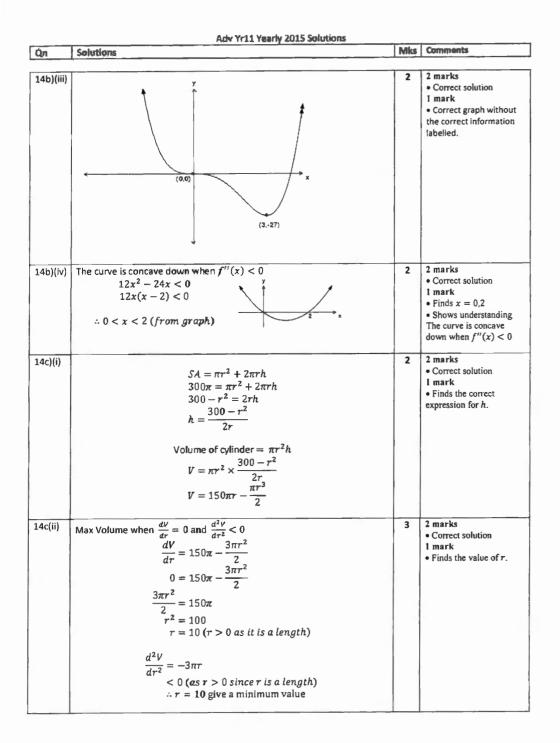
(i) Show that the volume of the can is given by $V = 150\pi r - \frac{\pi r^3}{2}$.

(ii) Find the radius of the cylinder that gives the maximum volume.

3


2

End of Examination


-	Adv Yr11 Yearly 2015 Solutions	Mks	Comments
Qn	Solutions	ivits	Comments
Sectio			
1	A		
1		1	
	$\sin 38^\circ = \frac{x}{7}$		
	x = 4.30963		
	x = 4.31		
2.	D		
	$\frac{1}{2\sqrt{5}-\sqrt{3}} \times \frac{2\sqrt{5}+\sqrt{3}}{2\sqrt{5}+\sqrt{3}} = \frac{2\sqrt{5}+\sqrt{3}}{4\times5-3}$	1	
	$\frac{1}{2\sqrt{5}-\sqrt{2}} \times \frac{1}{2\sqrt{5}+\sqrt{2}} = \frac{1}{4\times 5-3}$		
	$2\sqrt{3} - \sqrt{3}$ $2\sqrt{3} + \sqrt{3}$ $\sqrt{3}$	1 1	
	$=\frac{2\sqrt{5}+\sqrt{3}}{17}$		
3.	c 1/		
	$12(\alpha+\beta)=12\times\left(\frac{1}{3}\right)=4$	1	
	$12(u + p) = 12 \times (\frac{1}{3}) = 4$		
4	В		
	The curve is not continuous at points C and D.	1	
	Point A is both differentiable and continuous.		
5.	В		
	$(-x)^2 - 1$	1	
	$f(-x) = \frac{(-x)^2 - 1}{(-x)}$		
	$=\frac{x^2-1}{-x}$		
	=-f(x)		
6	A		
	Denominator≠0 and inside square root must be positive.	1	
	x + 3 > 0		
	x > -3		
7.	В		
	$x^2 - 4 > 0$	1	
	(x-2)(x+2) > 0		
	x < 0 or x > 0		
В.	D		
	$\frac{(3^2)^{2x}}{3^x} = \frac{3^{4x}}{3^x}$ $= 3^{3x}$	1	
	$\overline{3^x} = \overline{3^x}$		
	$= 3^{3x}$		
€.	D		
	There are 4 points of inflections.	1	
10.	D		
	$f(2x) = a^{2x} + a^{-2x}$	1	
	$[f(x)]^2 = (a^x + a^{-x})^2$		
	$= (a^{x})^{2} + 2(a^{x})(a^{-x}) + (a^{-x})^{2}$		
	$=a^{2x}+a^{-2x}+2$		
	=f(2x)+2		

Qn	Solutions	Miks	Comments
Section	n II		
11a)	$3\sqrt{2} + 3\sqrt{18} - \sqrt{8} = 3\sqrt{2} + 3 \times 3\sqrt{2} - 2\sqrt{2}$ $= 10\sqrt{2}$	2	2 marks •Correct answer 1 mark • Makes progress towards finding values
11b)	$2(x^3 - 8y^3) = 2(x - 2y)(x^2 + 2xy + 4y^2)$	2	using correct methods 2 marks •Correct answer 1 mark
11c)	$5m^{2} - 35m - (m^{2} - 2m + 1) = 5m^{2} - 35m - m^{2} + 2m - 1$ $= 4m^{2} - 33m - 1$	2	Factorises HCF or cubic 2 marks •Correct answer 1 mark • Makes progress towards • direct progress towards
11d)		Z	finding the correct answer 2 marks •Shows the correct curve and labels the y-int and the asymptote. 1 mark • Draws an exponential curve.
11e)	Midpoint = $\left(\frac{1+3}{2}, \frac{-2+-8}{2}\right)$ Midpoint = $(2, -5)$ $m_1 = \frac{-82}{3-1}$ $m_1 = -3$ $m_2 = \frac{1}{3}$	3	3 marks •Correct solution 2 marks • Makes progress towards finding equation of the line using correct methods J mark • Finds midpoint • Finds midpoint
	Equation of the line $y5 = \frac{1}{3}(x - 2)$ $3y + 15 = x - 2$ $x - 3y - 17 = 0$ $f'(x) = 4(3x - 1)^3 \times 3$		
11f)	$f'(x) = 4(3x - 1)^3 \times 3$ $f'(2) = 12(3(2) - 1)^3 = 1500$	2	2 marks •Correct solution 1 mark • Correct derivative • Substitutes x = 2 into an incorrect derivative
i1g)	$\frac{dy}{dx} = 2x + 3$ $m_T = 2(1) + 3$ $m_T = 5$ Equation of the tangent $y - 4 = 5(x - 1)$ $y = 5x - 1$	2	2 marks •Correct solution 1 mark • Finds the gradient of the tangent •Find the equation of the tangent with an incorrect gradient
12a)	$3x^{2} + 5x - 1 \equiv P(x + 1)^{2} + Q(x + 1) + R$ Let $x = -1$ $3(-1)^{2} + 5(-1) - 1 \equiv P(-1 + 1)^{2} + Q(-1 + 1) + R$ -3 = R Equating x^{2} : 3 = P Let $x = 0$ $3(0)^{2} + 5(0) - 1 \equiv 3(0 + 1)^{2} + Q(0 + 1) - 3$	2	2 marks • Correct answer 1 mark • Find one correct value • Finds two correct values if their first value is incorrect.

	Adv Yr11 Yearly 2015 Solutions	1.0.00	Comments	Qn	Solutions	Mks	Comments
Qn	Solutions	MIKS		- Cart			
	P = 2.0 = 1.0 = 2						
	$\therefore P = 3, Q = -1, R = -3$	2	2 marks	12e)	$2\sin x = \tan x$ for $0^\circ \le x \le 360^\circ$	2	2 marks
12b)	Equal roots when $\Delta = 0$	2	•Correct solution	,	sin x		 Correct solution
	$(2k+1)^2 - 4(k-1)(-2) = 0$		1 mark		$2\sin x = \frac{\sin x}{\cos x}$		1 mark
	$4k^2 + 4k + 1 + 8k - 8 = 0$		Correct expression for		$2\sin x \cos x - \sin x = 0$		 Finds x = 0°, 180°, 360
	$4k^2 + 12k - 7 = 0$		the discriminant.		$\sin x (2\cos x - 1) = 0$		 Finds x = 60°, 300°
	(2k+7)(2k-1) = 0 $k = -\frac{7}{2} \text{ or } k = \frac{1}{2}$		the discriminant.				
	7 1				1 - 200 = 200		
	$k = -\frac{1}{2} \text{ or } k = \frac{1}{2}$				$x = 0^{\circ}, 180^{\circ}, 360^{\circ}$ Acute angle = 60°		
.2c)(i)	$28x^3 - 3$	1	1 mark		In the 1 st and 4 th quadrant		
401(1)	202 3		 Correct answer 		$x = 60^{\circ}, 300^{\circ}$		
2c)(ii)	$u = 2x + 3$ $v = (x - 1)^2$	2	2 marks • Correct solution		$\therefore x = 0^{\circ}, 180^{\circ}, 360^{\circ}, 60^{\circ}, 300^{\circ}$		
	$u'=2 \qquad v'=2(x-1)$		1 mark	13a)(i)	-b	1	1 mark
			Makes progress towards	130)(1)	$\alpha + \beta = \frac{-b}{\alpha}$	-	 Correct answer
	$\frac{d}{dx} = \frac{2 \times (x-1)^2 - 2(x-1) \times (2x+3)}{(x-1)^4}$		finding the correct answer		u		
	$\frac{1}{dr} = \frac{1}{(r-1)^4}$		5		$\frac{4}{2}$		
					$=\frac{4}{2}=2$		
	$=\frac{2x-2-4x-6}{(x-1)^3}$						
	$-\frac{(x-1)^3}{(x-1)^3}$					_	
	7~ 0			13a)(ii)	$\alpha\beta = \frac{c}{-}$	1	1 mark
	$=\frac{-2x-8}{(x-1)^3}$				a		 Correct answer
	$(x-1)^{3}$				= 1		
2c)(iii)	$u = 3x + 5 \qquad v = 1 - x^2$	2	2 marks		$=\frac{1}{2}$		
/(/	$u' = 3 \qquad v' = -2x$		 Correct solution 				1
			1 mark	13a)(iii)	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta}$	1	1 mark
			 Makes progress towards 		$\alpha'\beta \alpha\beta$		· Correct answer
	$\frac{d}{dx} = \frac{3 \times (1 - x^2)^2 - 2x \times (3x + 5)}{(1 - x^2)^2}$		finding the correct answer	Ì	2		
	$\frac{dx}{dx} = \frac{(1-x^2)^2}{(1-x^2)^2}$			1.1	$=\frac{2}{4}$		
	$3x^2 + 10x + 3$				$=\frac{1}{\left(\frac{1}{2}\right)}$		
	$=\frac{3x^2+10x+3}{(1-x^2)^2}$		{		(2)		
.2d)(i)		2	2 marks		= 4		
Zujjij	12		 Correct solution 				
	Andres		1 mark				
			Shows correct	13b)	$\angle BCD = \angle DAB = 120^{\circ}$ (opposite angles of a parallelogram)	3	3 marks
			substitution to the cosine		BC = AD (opposite sides of a parallelogram)		 Correct solution
	138 body		formula		$\angle BCE = 180^\circ - \angle BCD$ (angle sum of a straight angle)		2 marks
					$= 180^{\circ} - 120^{\circ}$		 Significant progress
	(125°) Bernar				$= 60^{\circ}$		towards a correct
	Cardinane 150 km				00		solution
	402 1002 1 1502 - 2 × 100 × 150 × cos(1259)				$\angle BCE = \angle BEC$ (angles opposite equal sides of \triangle)		1 mark
	$AB^2 = 120^2 + 150^2 - 2 \times 120 \times 150 \times \cos(125^\circ)$	1			$\therefore \angle BCE = \angle BEC = 60^{\circ} \text{ (angles opposite equal sides of B)}$		• Shows $\angle BCE = 60^{\circ}$
	$AB = 239.89 \dots$						using logical steps and
	AB = 240 km				$\angle BCE + \angle BEC + \angle CBE = 180^{\circ}$ (angle sum of a $\triangle BCE$)		reasoning.
					$60^{\circ} + 60^{\circ} + \angle CBE = 180^{\circ}$		
.2d)(ii)	$\frac{\sin A}{\sin B} = \frac{\sin B}{\sin B}$	2	2 marks		$\angle CBE = 60^{\circ}$		
	a = b		Correct solution		$\therefore \Delta BCE$ is equilateral (all angles 60°)		
	$\sin \theta \sin 125^{\circ}$		1 mark				2
	$\frac{3110}{150} = \frac{31120}{239.89}$		• Finds θ correctly	13c)(i)	$m_{10} = \frac{3-5}{3-5} = \frac{1}{3-5}$	2	2 marks
			• Finds the correct bearing with an incorrect θ		$m_{AB} = \frac{1}{42} = -\frac{1}{3}$		Correct solution
	$\theta = 30^{\circ}81'$			1			1 mark
	$\theta = 31^{\circ}$ (nearest degree)				Equation of the line AB through $(-2,3)$ and $(4,3)$ is		 Finds the correct gradient
	0 - 51 (neurest uegree)				$1 = 5 - \frac{1}{(x+2)}$		Finds the correct
					$y-5=-\frac{1}{3}(x+2)$		equation using a wrong
	Bearing = $360^{\circ} - (180^{\circ} - 100^{\circ} - 31^{\circ})$				3y - 15 = -x - 2		gradient
	$= 360^{\circ} - 49^{\circ}$				x + 3y - 13 = 0		
	$= 311^{\circ}T$	1		1			1

Qn	Adv Yr11 Yearly 2015 Solutions						Mis	Comments		
-Ø1	3010 (10113									
			F!(~) - A-	3 12-	2		1	1 mark		
14b)(i)			$f'(x) = 4x \\ = 4x$	$\frac{2}{2}(x-3)$			1	· Correct answer		
			= 42	-(x - 3)			1			
14b)(ii)	Stat points w	3	3 marks							
140)(11)	Stat points w		Correct solution							
			2 marks							
			• Finds one stationary point and determines							
	When $x = 0$		its nature							
		$= (0)^4 - 4$	4(0)3	When x	$(3) = (3)^4$	A(2)3		1 mark		
	,(0)	f(0) = 0	1(0)	J	$f(3) = (3)^{-1}$			• Finds x = 0,3		
		∴ (0,0)			∴ (3, - 2)	7)				
		(0,0)		(3, 2	, ,					
	x	-1	0	1	3	4	1			
	$f'(\mathbf{x})$	-16	0	-8	0	64				
	Gradient			1		1				
	Gradient	`		`		/				
	point. OR									
	When $x = 0$									
	$f''(0) = 12(0)^2 - 24(0) \qquad \qquad f''(3) = 12(3)^2 - 12(3)^$									
	$f''(0) = 0 \qquad \qquad f''(3) = 36 > 0$									
	∴ A min. turning point at (3, -27)									
	Test concav									
	f''(-0.1) =									
	= >0									
	$f''(0.1) = 12(0.1)^2 - 24(0.1)$									
	= < 0									
	< 0									
	* Concavity									
		tal point of	inflection at							
	(0,0)			:						

.

.