

BAULKHAM HILLS HIGH SCHOOL

2017 YEAR 11 YEARLY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- In Questions 11–14, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for careless or badly arranged work

Total marks – 70 Exam consists of 8 pages.

This paper consists of TWO sections. Section I – Page 2-4 (10 marks)

Attempt Question 1-10

• Allow about **15** minutes for this section

Section II – Pages 5-8 (60 marks)

- Attempt questions 11-14
- Allow about **1 hours and 45** minutes for this section

1 What are the solutions of $2x^2 - 5x - 1 = 0$?

(A)
$$x = \frac{-5 \pm \sqrt{17}}{4}$$

(B)
$$x = \frac{5 \pm \sqrt{17}}{4}$$

(C)
$$x = \frac{-5 \pm \sqrt{33}}{4}$$

(D)
$$x = \frac{5 \pm \sqrt{33}}{4}$$

In the diagram, $\angle CAD = 114^{\circ}$ and $\angle ACB = 52^{\circ}$. DE is a straight line. AG bisects $\angle CAB$.

What is the value of $\angle AGB$?

- (A) 33°
- (B) 52°
- (C) 62°
- (D) 85°
- 3 The quadratic equation $3x^2 5x 4 = 0$ has roots α and β .

What is the value of $\alpha\beta$?

- (A) $-\frac{5}{3}$
- (B) $\frac{5}{3}$
- (C) $-\frac{4}{3}$
- (D) $\frac{4}{3}$

4

Which graph best represents the function $= 3^{-x}$?

(A)

(B)

(D)

- 5 What are the solutions of $\sqrt{3} \tan x = -1$ for $0^{\circ} \le x \le 360^{\circ}$?
 - (A) 120° and 240°
 - (B) 120° and 300°
 - (C) 150° and 210°
 - (D) 150° and 330°
- A parabola has focus (5,0) and directrix x = 1. What is the equation of the parabola? 6
 - (A) $y^2 = 16(x-5)$
 - (B) $y^2 = 8(x-3)$
 - (C) $y^2 = -16(x-5)$
 - (D) $y^2 = -8(x-3)$

7

What is the gradient of the tangent to the curve $y = (x + 1)\sqrt{x + 1}$ at x = 0?

- (A) $-\frac{1}{2}$
- (B) $\frac{1}{2}$
- (C) 1
- (D) $\frac{3}{2}$
- 8

Which of the following represents the solution to $|x-1| \ge 3$?

- (D)
- 9 The graph of the derivative y = f'(x) is drawn below.

A maximum turning point on y = f(x) occurs at:

- (A) x = -1
- (B) x = 3
- (C) x = 5
- (D) x = 7
- Line l has an x-intercept of -4 and y-intercept of -2. 10

Line k is perpendicular to line l and passes through the point (4,5).

Line m passes through the point (1,3).

Which of the following does not represent any of the lines k, l and m?

- (A) 2x + y 3 = 0
- (B) x + 2y + 4 = 0
- (C) 2x + y 5 = 0
- (D) x + y 2 = 0

End of Section I

Section II – Extended Response All necessary working should be shown in every question.

Qu	estion 11 (15 marks) - Start on the appropriate page in your answer booklet	Marks
a)	Rationalise the denominator of $\frac{3}{\sqrt{5}-2}$	2
b)	Differentiate the following with respect to x (i) $x^2 + \frac{2}{x} - 7$ (ii) $\sqrt{3x - 1}$ (iii) $\frac{x^2}{x+1}$	2 2 2
c)	Given $5x^2 + 7x + 6 \equiv A(x+1)^2 + B(x+1) + C$, find the value of the constants A, B and C.	2
d)	Find the equation of the normal to the curve $y = 2x^7 - 11x + 1$ at $x = 1$.	3
e)	Let $g(x) = x^2 + 1$ (i) Evaluate $g(-3)$. (ii) For what value(s) of x is $g(x) = 2$?	1
	End of Question 11	

Que	estion 12 (15 marks) - Start on the appropriate page in your answer booklet	Marks
a)	Given that the point $(-3, k)$ lies on the line $x + 5y - 7 = 0$, evaluate k .	1
b)	Evaluate $\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$.	2
c)	Given $g(x) = \sqrt{36 - x^2}$	
	(i) Show that $g(x)$ is an even function.	1
	(ii) Find the range of $g(x)$.	1
d)	In the diagram below, the lines $4y = 7x + 21$ and $4y = 31 - 3x$ intersect at the point B. Point A has co-ordinates $(-3, 0)$ and point C has co-ordinates $(5, 4)$.	
	y_{\blacktriangle} NOT TO SCALE	
	4y = 7x + 21	
	B	
	C(5, 4)	
	A(-3, 0) 0 $4y = 31 - 3x$	
	4y = 31 - 3x	
	(i) Show that the line AC has equation $2y = x + 3$.	2
	(ii) Show that B has co-ordinates $(1,7)$.	2
	(iii) Show that the perpendicular distance from B to the line AC is $2\sqrt{5}$ units.	2
	(iv) Find the exact length of the interval AC. Express your answer as a simplified surd.	1
	(v) Hence or otherwise, find the area of $\triangle ABC$.	1
e)	For what values of k does $kx^2 - 4x + k + 1 = 0$ have equal roots?	2
	End of Question 12	

Que	estion 13 (15 marks) - Start on the appropriate page in your answer booklet	Mark
a)	Given $0^{\circ} \le \theta \le 180^{\circ}$ and $\tan \theta = -\frac{5}{3}$, find the exact value of $\cos \theta$.	2
b)	ABC is a right-angled triangle in which $\angle ABC = 90^{\circ}$. Points D and E lie on AB and AC respectively such that DE is perpendicular to AC . $AD = 8 \text{cm}$, $EC = 11 \text{cm}$, and $AE = 5 \text{cm}$. Not to Scale 8 cm Not to Scale 11 cm Prove that $\triangle ABC$ is similar to $\triangle AED$. (ii) Hence, or otherwise find the length of DB .	2 3
c)	Consider the function $f(x) = 1 - 3x + x^3$, in the domain $-2 \le x \le 3$.	
	(i) Find the co-ordinates of the stationary points and determine their nature.	3
	(ii) Find the point of inflection.	2
	(iii) Draw a sketch of the curve $y = f(x)$ clearly showing all turning points and the point of inflection.	2
	(iv) What is the maximum value of the function $f(x)$ in the given domain?	1
	End of Question 13	

Que	estion 14 (15 marks) - Start on the appropriate page in your answer booklet	Marks
a)	Find all the possible values of θ for the triangle shown below.	2
b)	Prove that $\frac{\sin \theta}{1 - \cos \theta} + \frac{\sin \theta}{1 + \cos \theta} = 2 \csc \theta$.	2
c)	Factorise and simplify $\frac{4^x - 2^x}{6^x - 3^x}$	2
d)	The point $P(x, y)$ moves so that its distance from point $A(1, 5)$ is always twice its distance from point $B(4, -1)$. Show that the locus of P is a circle stating its centre.	3
e)	P L Not to Scale 12 cm Not to Scale 12 cm Tegan has rectangle sheet of paper 12cm wide by 20 cm long as shown above. Tegan folds the corner of the sheet along the dotted line KL so that the corner at P lies on MN	
	Let the new position of P be P_1 as shown: Not to Scale Not to Scale P N N N N N N N	
	At the bottom of the left rectangle there is a small triangle ΔMKP_1 Let the length of KM be x cm.	1 2
	(i) Explain why KP_1 is $(12-x)$ cm long. (ii) Show that the area of ΔMKP_1 is given by $A = x\sqrt{36-6x}$	3
	(iii) Find the maximum area of ΔMKP_1 .	

Year 11 Advanced Yearly 2017

	Solutions	Mks	Comments
1	$-(-5) + \sqrt{5^2 - 4 \times 2 \times -1}$		
	$x = \frac{x + y - y}{2 \times 2}$	1	D
	$r = \frac{5 \pm \sqrt{33}}{100}$	1	D
	c 4		
2			
	52		
	G	1	D
	850	1	D
	114° (33° 62°		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
3	Product of roots $=\frac{c}{a} = -\frac{4}{3}$	1	С
4	$\frac{1}{a}$ $\frac{1}{3}$	1	В
5	1	1	D
	$\tan x = -\frac{1}{\sqrt{3}}$	1	D
	Acute angle = 150° and in the 2^{nd} and 4^{th} quadrant		D
6	Vertex = (3,0)		
	(5,0)		_
	0 1 2 8 4 6 8 10 12	1	В
	-2		
	4		
	4		
7	3		
	$y = (x+1)^2$		
	$y = (x+1)^{\frac{3}{2}}$ $\frac{dy}{dx} = \frac{3}{2}(x+1)^{\frac{1}{2}}$		-
	$ax z \\ at x = 0$	1	D
	2		
	$m_T = \frac{3}{2}$		
	x = 0 is not a solution	1	A
9	<u> </u>		
	y = f'(x)		
	-3 -2 -1 1 2 3 4 5 6 1 8 9 10 11 x	1	C
	/ \ _		
1.0	Max		
	Line $l: y = mx - 2$ Line $k: m = 2$		
	since it passes $(-4,0)$ $y-5=2(x-4)$ $y-5=2x-8$		
		1	D
	Line m: using equation C:	1	D
	$y = -\frac{1}{2}x - 2$ $2(1) + 3 - 5 = 0$ $2x + y - 5 = 0$		
	···-y · · · ·	1	

	Solutions	Mks Comments
11a	$3 \sqrt{5} + 2 \sqrt{5} + 6$	2 marks
	$\frac{3}{\sqrt{5}-2} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} = \frac{3\sqrt{5}+6}{1}$	• correct solution.
	V 2 V 3 1 2	1 mark
	2 - 1 -	• correct conjugate
11b(i)	$y = x^2 + 2x^{-1} - 7$	2 marks
	$\frac{dy}{dx} = 2x - \frac{2}{x^2}$	• correct solution.
	$dx = x^2$	2 1 mark
		• derives one term correctly.
11b(ii)	_ 1	2 marks
110(11)	$y = (3x - 1)^{\overline{2}}$	• correct solution.
	$\frac{dy}{dx} = \frac{1}{2}(3x-1)^{-\frac{1}{2}} \times 3$	2 1 mark
	$\frac{dx}{dx} = \frac{1}{2}(3x - 1)^{-2} \times 3$	1 1
441 ////		• obtains $\frac{1}{2}(3x-1)^{-\frac{1}{2}}$.
11b(iii)	$\frac{dy}{dx} = \frac{3x^2(x+1) - x^3}{(x+1)^2}$	2 marks
		• correct solution. 1 mark
	$=\frac{2x^3+3x^2}{(x+1)^2}$	2 • correct use of the
	$-(x+1)^2$	quotient or product
	$=\frac{x^2(2x+3)}{(x+1)^2}$	rule.
	$=\frac{1}{(x+1)^2}$	
11c	$Let \ x = -1$	2 marks
	$5(-1)^2 + 7(-1) + 6 = A(-1+1)^2 + B(-1+1) + C$	• correct solution.
	C=4	1 mark
	equating x^2	• Finds one value.
	5 = A	2
	Let x = 0	
	6 = 5 + B + 4 B = -3	
11d	$\therefore A = 5, B = -3, C = 4$ $\frac{dy}{dx} = 14x^6 - 11$	3 marks
114	$\frac{dy}{dx} = 14x^6 - 11$	• correct solution.
	ax $at x = 1$:	2 marks
	$m_T = 3$	• Finds the gradient of
	1	the normal.
	$m_N = -\frac{1}{3}$	
	$y = 2(1)^7 - 11(1) + 1$	3 1 mark
	y = -8	• Finds the gradient of
	Equation of the tangent:	the tangent
	$y + 8 = -\frac{1}{3}(x - 1)$	•Uses the gradient
	x + 3y + 23 = 0	function as the gradient
	$\lambda + 3y + 23 = 0$	of the normal.
11e(i)	$g(-3) = (-3)^2 + 1$	1 1 mark
		• correct answer.
11e(ii)	$= 10$ $2 = x^2 + 1$	1 mark
	$x^2 = 1$	1 • correct solution.
	$x = \pm 1$	

12a	-3 + 5k - 7 = 0		1 mark
	k = 2	1	• correct answer.
12b	$x^3 - 27$ $(x - 3)(x^2 + 3x + 9)$		2 marks
	$\lim_{x \to 3} \frac{x^3 - 27}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x^2 + 3x + 9)}{x - 3}$		• correct solution.
	$= \lim_{\substack{x \to 3 \\ = 3^2 + 3 \times 3 + 9}} x^2 + 3x + 9$	•	1 mark
	$= 3^{2} + 3 \times 3 + 9$	2	• Finds a limit with
	= 27		incorrect factorisation but
			able to cancel out the denominator
12c(i)	$g(-x) = \sqrt{36 - (-x)^2}$		1 mark
			• correct proof.
	$=\sqrt{36-x^2}$	1	
	g(-x) = g(x)		
12c (ii)	$\therefore g(x) \text{ is even}$ Move value when $x^2 = 0$, $x = 6$		1 morts
120 (11)	Max value when $x^2 = 0 \rightarrow y = 6$ Min value when $x = 6 \rightarrow y = 0$		1 mark • correct answer.
	$0 \le y \le 6$	1	Correct answer.
	0 <u>3</u> y <u>3</u> 0		
12d (i)	4-0_1		2 marks
	$m = \frac{1}{5 - 3} = \frac{1}{2}$		• correct solution.
	$y - 0 = \frac{1}{2}(x+3)$	2	1 mark
	L		• Finds the gradient.
12d (ii)	2y = x + 3 If B intersects $4y = 7x + 21$ and $4y = 31 - 3x$, then it must satisfy both equations		2 marks
12u (11)	Sub (1,7) into $4y = 7x + 21$ and $4y = 31 - 3x$, then it must satisfy both equations $4y = 7x + 21$		• correct solution.
	$LHS = 4 \times 7 = 28$		1 mark
	RHS = 7(1) + 21 = 28		• Shows the point lies
	$\therefore \text{ lies on } 4y = 7x + 21$	•	on one line.
	, and the second	2	• Finds either <i>x</i> or <i>y</i> .
	Sub (1,7) into $4y = 31 - 3x$		
	$LHS = 4 \times 7 = 28$		
	$RHS = 31 - 3 \times 1 = 28$		
10.1/!!!	$\therefore \text{ lies on } 4y = 31 - 3x$		
12d(iii)	$d = \frac{ ax_1 + by_1 + c }{\sqrt{a}}$		2 marks
	$d = \frac{\sqrt{a^2 + b^2}}{\sqrt{a^2 + b^2}}$ $d = \frac{ 1 - 2(7) + 3 }{\sqrt{1^2 + 2^2}}$		• correct solution. 1 mark
	$d = \frac{ 1 - 2(7) + 3 }{}$		markmanipulates equation
	$\sqrt{1^2 + 2^2}$	2	into general form and
	$d = \frac{10}{\sqrt{5}}$		applies it to the
	1		perpendicular distance
	$d=2\sqrt{5}$		formula.
	$d = \sqrt{(5+3)^2 + (4-0)^2}$		1 mark
12d(iv)	$d=4\sqrt{5}$	1	• correct answer.
12d(v)	1 – –		1 mark
	$A = \frac{1}{2} \times 4\sqrt{5} \times 2\sqrt{5}$	1	• correct answer.
	$A = \overline{20} \text{ units}^2$		
12e	The equation $kx^2 - 4x + k + 1 = 0$ will have equal roots when $\Delta = 0$		2 marks
	$\Delta = b^2 - 4ac$		• correct solution.
	0 = 16 - 4k(k+1)		1 mark
	$0 = 16 - 4k - 4k^2$	2	• correct algebraic
	$k^2 + k - 4 = 0$	•	expression for $\Delta = 0$.
	$k = \frac{-1 \pm 17}{2}$		
	2		

13a	Since $0 \le \theta \le 180^\circ$ and $\tan \theta < 0$	2	2 marks
	then θ is in the 2 nd quadrant.		• correct solution.
	5		1 mark
	$\therefore \cos \theta = -\frac{3}{\sqrt{34}}$		• recognising
	$\frac{\theta}{3}$		$\cos \theta < 0$
			• finds $\sqrt{34}$
13b(i)	In $\triangle ABC$ and $\triangle AED$		2 marks
	$\angle BAC$ is common		• correct solution.
	$\angle AED = \angle ABC = 90^{\circ} (AC \perp DE)$ $\triangle ABC \triangle AED (AA)$	2	1 markProves twp pairs of
	AADCIIIAALD (AA)		angles equal and not
			stating the rule used.
13b(ii)	Let DB = x		3 marks
	AD AE		• correct solution.
	$\frac{AD}{AC} = \frac{AE}{AB}$ (matching sides of similar triangles in ratio)		2 marks
			• Finds an appropriate
	$\frac{8}{5+11} = \frac{5}{8+x}$	3	ratio stating the correct
			reason. • Finds x without any
	$8+x=\frac{5\times16}{8}$		reasons.
	8		1 mark
	x = 2		• Finds the ratio.
13c(i)	$f'(x) = -3 + 3x^2$	3	3 marks
	stationary points occur when $f'(x) = 0$		• correct solution.
	$0 = -3(1 - x^2)$		2 marks
	$x = \pm 1$		• correct solution.
	f(-1) = 3 and $f(1) = -1$		1 mark
	f''(-1) = 6x		• Finds $x = \pm 1$
	f''(-1) = -6 < 0 : concave down		
	\therefore max at $(-1,3)$		
	f''(-1) = 6 > 0 : concave up		
	\therefore min at $(1, -1)$		
13c(ii)	Inflection occurs when $f''(x) = 0$		2 marks
	6x = 0		• correct solution
	x = 0		(must test inflexion
	f(0) = 1		point)
	Test for inflexion:	2	1 mark
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		• Finds $x = 0$ by second derivative.
	f''(x) -6 0 6		second derivative.
	\therefore (0,1) is an inflection point		
13c(iii)	y (3,19)	2	2 marks
			• correct solution.
			1 mark
			• draws a graph
			without showing keys
	(-1,3)		points such as max
			point, min point or endpoints.
	$\langle (-2,-1) \rangle $ $(1,-1)$ $(1,-1)$		chaponius.
	$(-2,-1)$ ψ $(1,-1)$ Max value is 19.	1	1 mark
	iviax value is 19.	1	
			• correct answer.

		T		
14a(i)	6cm α 35°	$\frac{\sin \alpha}{9} = \frac{\sin 35}{6}$ $\alpha = 59^{\circ}21' \text{ or } 120^{\circ}39'$ $\therefore \theta = 85^{\circ}39' \text{ or } 24^{\circ}21'$	2	 2 marks correct solution. 1 mark Finds an angle for the triangle.
14b	$LHS = \frac{\sin \theta}{1 - \cos \theta}$ $= \sin \theta \left(\frac{1 + \theta}{1 - \theta}\right)$ $= \frac{2}{\sin^2 \theta}$ $= 2\csc \theta$	$+\frac{\sin\theta}{1+\cos\theta}$ $\frac{\cos\theta+1-\cos\theta}{1-\cos^2\theta}$	2	 2 marks correct solution. 1 mark recognising 1 - cos² θ = 1
14c		$\frac{2^{x}(2^{x}-1)}{3^{x}(2^{x}-1)}$ $\frac{2^{x}}{3^{x}}$	2	 2 marks correct solution. 1 mark attempts to factorise 2^x or 3^x
14d	$x^{2} - 2x + 1 + y^{2} - 10y + 25 = 0$ $0 = 0$ $x^{2} - 10x + 5^{2} + y^{2} + 6$ $(x - 5)^{2} + (y^{2} + 1)^{2}$		3	 3 marks correct solution. 2 marks Completes the square to find a centre. 1 mark Finds a simplified expression for PA² = 4PB².
	PM = 12cm $PK = P_1K$ (same side folded) PK = 12 - x $P_1K = 12 - x$		1	1 mark • correct solution.
14e (ii)	$MP_1^2 = (12)$ $= 144$ $MP_1 = \sqrt{14}$ $MP_1 = 2\sqrt{3}$ $A = \frac{1}{2} \times MR$	$\frac{36 - 6x}{6 \times MP_1}$ $4 \times 2\sqrt{36 - 6x}$	2	2 marks • correct solution. 1 mark • Finds MP ₁ .
14e (iii)	Stationary points when $\frac{dA}{dx} = 0$ $u = x$ $v = (36 - 6x)^{\frac{1}{2}}$ $u' = 1$ $v' = -3(36 - 6x)^{-\frac{1}{2}}$		3	3 marks • correct solution. 2 marks • shows max occurs at = 4 1 mark • Finds $\frac{dA}{dx}$

$\frac{dA}{dx} = \sqrt{36 - 6x} - \frac{3x}{\sqrt{36 - 6x}}$	
if $A' = 0$	
$\frac{3x}{\sqrt{36-6x}} = \sqrt{36-6x}$	
3x = 36 - 6x	
9x = 36	
x = 4	
x 3 4 5	
A' = 2.12 0 -4.22	
/ - \	
$\therefore \text{ max occurs at } x = 4.$	
$A_{\text{max}} = 4\sqrt{36 - 6 \times 4}$	
$A_{\text{max}} = 4\sqrt{12}$	
$A_{\text{max}} = 4\sqrt{12}$ $A_{\text{max}} = 8\sqrt{3} \text{ cm}^2$	