Caringbah High School

Church a was 81	•
Student Name	

2017 Year 11 Semester 2 Exam

Mathematics (2 Unit)

General Instructions

- Approved calculators may be used.
- Start each question in a new booklet.
- Answers not supported with working may not attract full marks.
- Marks may not be awarded for carelessly arranged work.
- · Write using a black or blue pen
- A reference sheet with mathematical formulae is provided

Time Allowed

2 hours + 3 minutes reading time

Answer questions 1-5 on the multiple choice answer sheet provided

Multiple Choice (1 Mark each)

Question 1

If
$$x = a \left(b - \frac{1}{y} \right)$$
 then

A)
$$y = \frac{a}{b-x}$$

$$B) \quad y = \frac{a}{ab - x}$$

$$C) \quad y = \frac{1}{ab - x}$$

$$D) \quad y = \frac{x}{a} - b$$

Question 2

The solution to the inequality

$$6 - x - x^2 \le 0 \quad \text{is} \quad$$

A)
$$-3 \le x \le 2$$

B)
$$x \le -2$$
 or $x \ge 3$

C)
$$x \le -3$$
 or $x \ge 2$

D)
$$-2 \le x \le 3$$

Question 3

What is the perpendicular distance between the lines y = x + 5 and x - y = 3

A)
$$4\sqrt{2}$$

c)
$$\sqrt{2}$$

D)
$$2\sqrt{2}$$

Question 4

Which of the following trigonometric expressions is equivalent to $\tan(90-x)^{\circ}$?

- A) $\tan x^{\circ}$
- B) $\cot x^{\circ}$
- C) $-\tan x^{\circ}$
- D) $-\cot x^{\circ}$

Question 5

The midpoint of A(x,2), B(-5,y) is M(8,-10) The value of x,y is,

- A) x = -21, y = 22
- B) x = 21, y = 22
- C) x = -21, y = -22
- D) x = 21, y = -22

Question 6 (12 Marks)

Marks

a) Find the value of y such that

$$2\sqrt{50} - \sqrt{72} = \sqrt{y} \tag{2}$$

b) Express with a rational denominator

$$\frac{\sqrt{2}}{\sqrt{3}+1} \tag{2}$$

c) Solve the equation $2\cos\theta = -1$ for $0^{\circ} \le \theta \le 360^{\circ}$ (2)

d) Find
$$\lim_{x \to -4} \frac{x^2 + x - 12}{x + 4}$$
 (2)

e) Graph the region $(\frac{1}{3} \text{ page size})$ where the inequations hold simultaneously $y>x^2$ and $y\geq x+6$

f) Show that
$$\cos \theta \tan \theta = \sin \theta$$
 (1)

Question 7 (12 Marks)

Marks

a) State the domain and range of
$$y = \sqrt{x-2}$$
 (2)

b) If
$$f(x) = \begin{bmatrix} x^2 - 1 & x \ge 1 \\ 2 - x & -1 < x < 1 \\ \frac{1}{x} & x \le -1 \end{bmatrix}$$

Find the value of
$$2f(3)-f(-3)$$
 (2)

c) Simplify
$$\frac{16}{2^{3x} \times 8^{1-x}}$$
 (2)

d) Draw separate sketches ($\frac{1}{3}$ page size) of the following. Show any intercepts with the axes , and any asymptotes.

$$y = 2x - 1 \tag{1}$$

ii)
$$y = -\sqrt{4 - x^2}$$
 (2)

iii)
$$y = 2^x + 1$$
 (3)

a) The points A(8,-3) and B(5,4) are shown in the diagram below. The line through AB makes an angle of θ with the positive x axis and the point C lies on the x axis.

- i) Find the gradient of the line AB (1)
- ii) Find the value of heta to the nearest degree. (1)
- iii) Find the coordinates of C given $AB \perp BC$ (2)
- iv) Find the coordinates of M, the midpoint of AB (1)
- v) Find the equation of the line through M parallel to the line BC in general form (2

b) Two sides of a triangular field are AB=60 m, AC=50 m and the included angle $\angle BAC=\theta$ is obtuse.

- i) If the area of the triangle is 750m^2 , find the size of $\angle BAC$ (2)
- ii) Find the length of the side BC (1 decimal place) (2)
- c) Make b the subject if $\frac{1}{x} = \frac{1}{a} + \frac{1}{b}$ (1)

a) In the diagram PQ and SR are parallel railings 3metres apart. The points P and Q are fixed 4 metres apart on the lower railing. Two crossbars PR and QS intersect at T as shown in the diagram. The line through T perpendicular to PQ intersects PQ at U and SR at V. The length UT is Y metres.

i. By using similar triangles, or otherwise, show that
$$\frac{SR}{PQ} = \frac{VT}{UT}$$
 (3)

ii. Show that
$$SR = \frac{12}{y} - 4$$
 (2)

iii. Find the total area, A of ΔPTQ and ΔRTS in terms of y in simplest form (3)

b) Solve for x

$$\frac{1}{2\sqrt{5} + \sqrt{x}} + \frac{1}{2\sqrt{5} - \sqrt{x}} = 2\sqrt{5}$$

(3)

a) A rocket launched vertically from L is observed on from A. Soon after launch when at position M its angle of elevation is 25° . After it climbs 4000 metres from this position to N its angle of elevation is 66°

i) · Find $\angle ANL$ (1)

ii) Find length of AM (to nearest metre) (2)

iii) Find how far the observer is from the launch pad (to nearest metre) (2)

Question 10 (continued)

b)

In $\Delta \it{PQR}$, \it{T} lies on side \it{QR} and \it{S} lies on side \it{PR} such that $\it{QT}=\it{TR}$, $\it{QS}=\it{QP}$, $\it{ST}\perp\it{QT}$

i) Copy the diagram into your answer booklet and show all the given information. (1)

ii) Prove that
$$\Delta QTS \equiv \Delta RTS$$
 (2)

iii) Prove that
$$\angle QPS = 2\angle TQS$$
 (3)

Question 11 (11 Marks)

Marks

- a. Consider the circle $(x-1)^2 + (y-2)^2 = 18$
 - i) Find the centre of the circle and its radius (2)
 - ii) Show that the line y = x 5 is tangent to the circle (3)
- b. Consider the function $g(x) = \frac{2x}{x^2 1}$
 - i) State the domain of this function (1)
 - ii) Determine with justification whether the function is odd, even, or neither (2)
- c. Given $f(x) = \sqrt{5x-25} \sqrt{x-1}$ find the value of x for which f(x) = 2. (3)

- a. A regular polygon has an exterior angle of 20° . How many sides does the polygon have? (1)
- b. Prove that $\cos^2(90^\circ \theta)\cot\theta = \sin\theta\cos\theta$ (2)
- c. Show that $\lim_{x \to \infty} \frac{4x^2 x^3 + 2}{3x^3 x^2 + 1} = \frac{-1}{3}$ (2)
- d. Find the equation of the line passing through the point of intersection of the lines

$$4x-2y+3=0$$
 and $x+4y+6=0$ and which has a gradient of $\frac{2}{3}$. (3)

e. A large tank can be filled by 2 similar small pumps and 1 larger pump working together in 1 hour and 12 minutes. The larger pump B alone takes 1 hour less than the smaller pump A alone to fill the tank. Find out how long each pump takes, given that $\frac{V}{P} = T$ where

$$V = \text{Volume of the tank}, \quad P = \text{Pump}, \quad T = \text{Time}$$
 (3)

END OF EXAM