
CHELTENHAM GIRLS HIGH SCHOOL

MATHEMATICS

Time allowed: 90 minutes

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are not of equal value.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work
- Examination answers are to be in completed in blue or black pen.
- Board approved calculators may be used.
- Each question is to be started on a new page.
- The marks allocated for each question are indicated

Name:		
Class Teacher:		

Question	1	2	3	4	Total	%
. Mark	/14	/14	/15	/15	/58	

Question 1 (14 marks) Start a new page

Mark

(a) Write 8539.25377 correct to 3 significant figures

1

(b) Factorise completely: $3x^2 - 12y^2$.

- 2
- (c) Express $\frac{\sqrt{32}-\sqrt{8}}{3\sqrt{2}}$ in the form of a simple fraction $\frac{a}{b}$, where a and b are rational numbers.
- 2

(d) Solve the equation $\frac{2x}{x-5} = \frac{3}{7}$

- 2
- (e) Sketch the graph of y = |3-2x| and find the set of values of x for which $y \le 3$.
- (f) Given that $3 \log_x 2 \log_x 128 = 4$, find the value of x.

2

- (g) Find the EXACT value of:
 - (i) $\sin 225^\circ$

1

(ii) sec 120°

ı

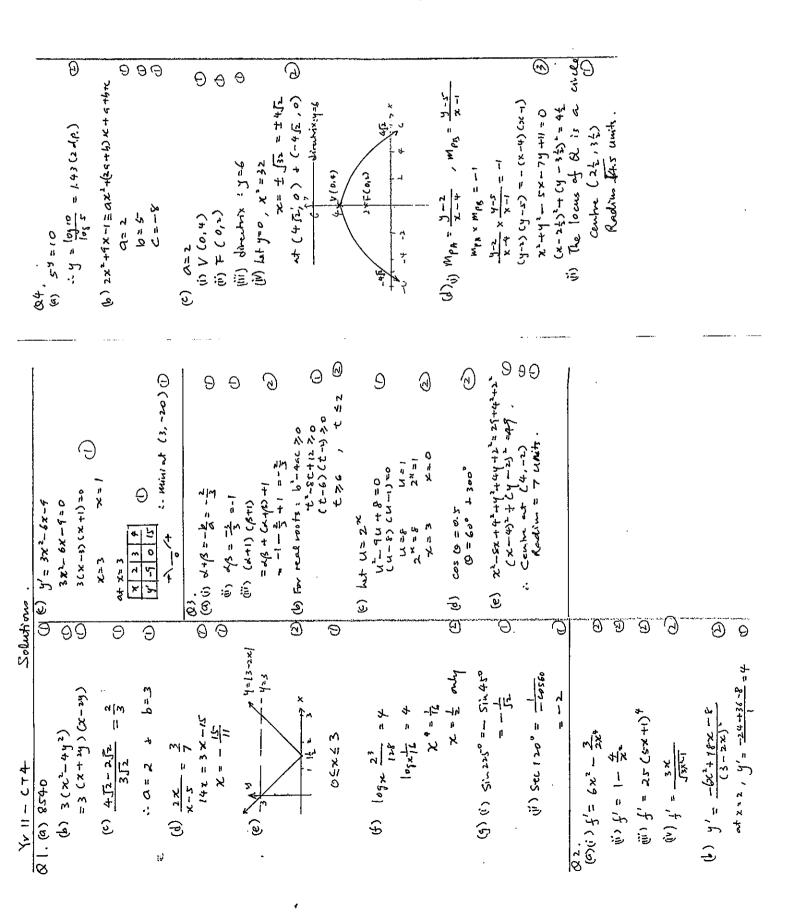
Question 2 (14 marks) Start a new page

Mark

(a) Differentiate:

(i)
$$2x^3 + \frac{1}{2x^3}$$

(ii)
$$\frac{(x+2)^2}{x}$$


(iii)
$$(5 x+1)^5$$

(iv)
$$\sqrt{3x^2-1}$$

- (b) Calculate the gradient of the curve $y = \frac{3x^2 4}{3 2x}$ at the point (2, -8)
- 3
- (c) The curve $y = x^3 3x^2 9x + 7$ has two stationary points. Find the co-ordinates of the minimum turning point.
- 3

Q	Question 3 (15 marks) Start a new page		
	(a)	If α and β are the roots of $3x^2 + 2x - 3 = 0$, find the value of (i) $\alpha + \beta$ (ii) $\alpha \beta$	1
		(iii) $(\alpha+1)(\beta+1)$	2
•	(b)	Find the values of t for which the equation $x^2 + tx + 2t - 3 = 0$ has real roots.	3
	(c)	Solve the equation $4^x - 9(2^x) + 8 = 0$	3
	(d)	Find all values of θ if $0 \le \theta \le 360^{\circ}$ for $\cos \theta = 0.5$	2
	(e)	Find, by completing the square method, the centre and the radius of the circle with equation $x^2 + y^2 = 8x - 4y + 29$.	3

Questio	Question 4 (15 marks) Start a new page				
(a)	Solve the equation $5^y = 10$, give your answer correct to 2 decimal places.	2			
(b)	Given $2x^2 + 9x - 1 \equiv a(x+1)^2 + b(x+1) + c$, find the values of a, b and c.	3			
(c)	A parabola P has equation $x^2 = -8(y-4)$.				
	Draw a neat sketch of P . You must show clearly: (i) the co-ordinates of its vertex	1			
	(ii) the co-ordinates of its focus	1 1			
•	(iii) the equation if its directrix	1			
	(iv) the x - intercepts	2			
(d)	\boldsymbol{A} and \boldsymbol{B} are the points $(4,2)$ and $(1,5)$ respectively.				
	(i) Find the equation of the locus of a point $Q(x, y)$ which moves such that	3			
	QA is perpendicular to QB .				
	(ii) Describe the locus of Q in part (i) geometrically.	1			

