Name:
Class:
Teacher:

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2007

YEAR 11

AP2 EXAMINATION

MATHEMATICS

Time allowed - 2 HOURS
(Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

> Attempt all questions.
> Each question is to be commenced on a new page clearly marked Question 1, Question 2 , etc on the top of the page. **
> If you do not attempt a question you must submit a blank page clearly indicating the question number, your name and class.
> All questions should be stapled together in order Question 1 to 7
> All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
> Approved calculators may be used.
**Each page must show your name and your class. **
a) Evaluate $\frac{3.54 \times 11.3}{\sqrt{17}}$ expressing your answer to 3 significant figures.
b) Fully factorise $7 x^{2}-28$
c) Given that $\sqrt{80}-\sqrt{a}=2 \sqrt{5}$, find the value of a.
d) Sketch $y=\cos x$ for $-180 \leq x \leq 180$.

1
e) Express $\frac{\sqrt{2}+6}{\sqrt{2}-\sqrt{3}}$ with a rational denominator.
f) Solve $0=2 x^{2}-3 x-9$
g) Solve $-11 t+4 \geq-18$ and plot on a number line.
h) If $\sin A=-\frac{1}{\sqrt{2}}$ and $\cos A$ is positive. What is the value of A ?

Question 212 Marks

a)

$A C=4 \mathrm{~cm}, C B=5 \mathrm{~cm}$ and $\angle A C B=120^{\circ}$. Copy the diagram onto your worksheet and add the information. Determine the area of the triangle, giving an exact answer.
b) Express $\left(x^{6}+5\right)^{-2}$ with only positive indices.
c) Evaluate $\log _{7} 9$ correct to 3 significant figures.
d) If $\log _{2} x=3$, find the value of x
e) Express $\sqrt[7]{5^{x}}$ with a fractional power.
f) Simplify
i) $\log _{3} 36-\log _{3} 4$

- ii) $\log _{b} 8+\log _{b} 0.125 \quad 2$
g) If $\log _{7} 49 \sqrt{7}=h$, find h.
a) Find the gradient and y-intercept of $3 x-4 y+2=0$
b) The equation of a line is given by the formula $y=(\tan \theta) x+8$. What is the value of θ if the gradient is $\sqrt{3}$?
c)
i) Find the equation of the line that passes through the point $(5,6)$ with a gradient of -2 . Express your answer in the gradient intercept form.
ii) What is the equation of the line that is perpendicular to the above line which also passes through $(5,6)$?
d) $y=12 x-5$ can be written in the general form as $12 x-y-5=0$. Find the perpendicular distance from the point $(2,15)$ to the line $y=12 x-5$.
e) Find the equation of the line that passes through (4, -3) and $(-5,15)$. Express in general form.
f) Using the formula $L_{1}+k L_{2}=0$ or otherwise, find the equation of the line that passes through the point of intersection of the lines $2 x+5 y+10=0$ and $3 x+2 y-2=0$ and also passes through $(5,6)$.

Question 412 Marks

a) \quad Sketch $y=|2 x-1|$
b)
i) Evaluate $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-x-20}$
ii) Hence or otherwise, state the domain of $\frac{x-5}{x^{2}-x-20}$
c) Part of an even function is drawn below.

Copy and complete the left side.
d) Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2}-4}{3-5 x^{2}}$
e) For the function defined by:

$$
f(x)=\left\{\begin{array}{lll}
3-x^{2} & \text { for } & -3 \leq x \leq-1 \\
2 x & \text { for } & -1<x<1 \\
x^{2}-1 & \text { for } & 1 \leq x \leq 3
\end{array}\right\}
$$

i) Evaluate:
A) $f(-2)$
B) $f(1)$
ii) Sketch the graph of the function for $-3 \leq x \leq 3$
iii) State the range of the function

Question 512 Marks

a) Find the derivative of:
i) $y=6 x^{2}-2 x+9 \quad 1$
ii) $y=\frac{9 x^{3}+4}{2 x}$
iii) $y=x^{2} \sqrt{x-1}$
iv) $y=\left(2 x^{5}+8 x\right)^{4}$
b) Differentiate $f(x)=3 x^{2}+4$ by first principles.
c)
i) Find the equation of the tangent to the curve $y=-4 x^{2}-3 x$ when $x=5$
ii) At what point(s) on the curve $y=-4 x^{2}-3 x$ is the tangent to the curve parallel to the x -axis?
a) The interior angles of a regular polygon are each 120°. How many sides does this polygon have?
b)

$\mathrm{A}, \mathrm{B}, \mathrm{E}$ and F are collinear points. ABCD and EFCD are parallelograms. BC and $E D$ intersect at H such that H is the mid-point of $B C$.

Copy or trace the diagram onto your worksheet.
i) Prove that $\triangle B H E \equiv \triangle C H D$. Give reason(s).
ii) Show that $D C=B E$. Give reason(s).
iii) Hence or otherwise, show that $A F=3 D C$. Give reason(s).
c)

In the diagram $C F \| G J, \angle E D H=110^{\circ}$ and $\angle E I J=70^{\circ}$. Prove $A K \| B L$.
d)

In the diagram above $Y W \| X Z$ and $\angle W=\angle X$.
i) Show that $\triangle Y W Z$ is similar to $\triangle Z X Y$. 2
ii) Find the length of interval $X Z$.

Start a new page

Question 7 12 Marks

a) Find the centre and the radius of $(x-3)^{2}+(y+2)^{2}=5$
b) Show that the curve $y=3 x^{2}+3$ is parallel to $y=12 x-5$ at the point $(2,15)$.
c) Show that $\sin ^{2} x \cos ^{2} x+\cos ^{4} x=\cos ^{2} x$
d) Sketch the region $x y>4$.
e) $\quad f(x)$ is an odd function, where $f(8)=9$.
i) Find $f(-8)$
ii) Given that $g(x)=2 x^{3}-120$ find the value of $f(g(4))$
f) $\mathrm{A}(-1,4), \mathrm{B}(-5,7)$ and $\mathrm{C}(6,9)$ are 3 vertices of rhombus ABCD . Find the coordinates of D.

