JG
AW
ΚW
AT
FH
NB
GB
HK
KA

Name:	
Class: ——	
Teacher: ——	

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2007

YEAR 11

AP2 EXAMINATION

MATHEMATICS

Time allowed - 2 HOURS (Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

- Attempt all questions.
- Each question is to be commenced on a new page clearly marked Question 1, Question 2, etc on the top of the page. **
- If you do not attempt a question you must submit a blank page clearly indicating the question number, your name and class.
- All questions should be stapled together in order Question 1 to 7
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.

**Each page must show your name and your class. **

Ouestion	1	12	Marks
V u voition			T. WALL

Marks

a) Evaluate
$$\frac{3.54 \times 11.3}{\sqrt{17}}$$
 expressing your answer to 3 significant figures.

b) Fully factorise
$$7x^2 - 28$$

c) Given that
$$\sqrt{80} - \sqrt{a} = 2\sqrt{5}$$
, find the value of a.

d) Sketch
$$y = \cos x$$
 for $-180 \le x \le 180$.

e) Express
$$\frac{\sqrt{2}+6}{\sqrt{2}-\sqrt{3}}$$
 with a rational denominator.

f) Solve
$$0 = 2x^2 - 3x - 9$$

g) Solve
$$-11t + 4 \ge -18$$
 and plot on a number line.

h) If
$$\sin A = -\frac{1}{\sqrt{2}}$$
 and $\cos A$ is positive. What is the value of A?

1

1

2

a)

AC = 4cm, CB = 5cm and $\angle ACB = 120^{\circ}$. Copy the diagram onto your worksheet and add the information. Determine the area of the triangle, giving an exact answer.

- b) Express $(x^6 + 5)^{-2}$ with only positive indices.
- c) Evaluate $\log_7 9$ correct to 3 significant figures.
- d) If $\log_2 x = 3$, find the value of x
- e) Express $\sqrt[7]{5^x}$ with a fractional power.
- f) Simplify
 - i) $\log_3 36 \log_3 4$
 - ii) $\log_b 8 + \log_b 0.125$
- g) If $\log_7 49\sqrt{7} = h$, find h.

Question	3 12 Marks	Marks
a)	Find the gradient and y-intercept of $3x - 4y + 2 = 0$	1
b)	The equation of a line is given by the formula $y = (\tan \theta)x + 8$. What is the value of θ if the gradient is $\sqrt{3}$?	1
c)	i) Find the equation of the line that passes through the point $(5,6)$ with a gradient of -2 . Express your answer in the gradient intercept form.	2
	ii) What is the equation of the line that is perpendicular to the above line which also passes through (5,6)?	1
d)	y = 12x - 5 can be written in the general form as $12x - y - 5 = 0$. Find the perpendicular distance from the point (2, 15) to the line $y = 12x - 5$.	2
e)	Find the equation of the line that passes through (4, -3) and (-5, 15). Express in general form.	2
f)	Using the formula $L_1 + kL_2 = 0$ or otherwise, find the equation of the line that passes through the point of intersection of the lines $2x + 5y + 10 = 0$ and $3x + 2y - 2 = 0$ and also passes through (5, 6).	3

Question 4 12 Marks

Marks

a) Sketch
$$y = |2x - 1|$$

2

i) Evaluate $\lim_{x \to 5} \frac{x-5}{x^2 - x - 20}$

1

ii) Hence or otherwise, state the domain of $\frac{x-5}{x^2-x-20}$

1

c) Part of an even function is drawn below.

1

Copy and complete the left side.

1

d) Evaluate
$$\lim_{x \to \infty} \frac{3x^2 - 4}{3 - 5x^2}$$

e) For the function defined by:

$$f(x) = \begin{cases} 3 - x^2 & \text{for } -3 \le x \le -1 \\ 2x & \text{for } -1 < x < 1 \\ x^2 - 1 & \text{for } 1 \le x \le 3 \end{cases}$$

i) Evaluate:

1

A)
$$f(-2)$$

1

$$\mathbf{B)} \ f(1)$$

_

ii) Sketch the graph of the function for $-3 \le x \le 3$

3

iii) State the range of the function

1

Question	5 12 Marks	Marks
a)	Find the derivative of:	
	i) $y = 6x^2 - 2x + 9$	1.
	ii) $y = \frac{9x^3 + 4}{2x}$	2
	$iii) y = x^2 \sqrt{x-1}$	2
	iv) $y = (2x^5 + 8x)^4$	2
b)	Differentiate $f(x) = 3x^2 + 4$ by first principles.	2
c)		
	i) Find the equation of the tangent to the curve $y = -4x^2 - 3x$ when $x = 5$	2
	ii) At what point(s) on the curve $y = -4x^2 - 3x$ is the tangent to the curve parallel to the x-axis?	1

2

3

a) The interior angles of a regular polygon are each 120°. How many sides does this polygon have?

b)

A, B, E and F are collinear points. ABCD and EFCD are parallelograms. BC and ED intersect at H such that H is the mid-point of BC.

Copy or trace the diagram onto your worksheet.

i) Prove that
$$\triangle BHE \equiv \triangle CHD$$
. Give reason(s).

ii) Show that
$$DC = BE$$
. Give reason(s).

iii) Hence or otherwise, show that AF = 3DC. Give reason(s).

c) 2

In the diagram $CF \|GJ\|$, $\angle EDH = 110^{\circ}$ and $\angle EIJ = 70^{\circ}$. Prove $AK \|BL\|$.

d)

In the diagram above YW || XZ and $\angle W = \angle X$.

i) Show that $\triangle YWZ$ is similar to $\triangle ZXY$.

ii) Find the length of interval XZ.

2

Question	7 12 Marks	Marks
a)	Find the centre and the radius of $(x-3)^2 + (y+2)^2 = 5$	1
b)	Show that the curve $y = 3x^2 + 3$ is parallel to $y = 12x - 5$ at the point (2,15).	3
c)	Show that $\sin^2 x \cos^2 x + \cos^4 x = \cos^2 x$	2
d)	Sketch the region $xy > 4$.	2
e)	f(x) is an odd function, where $f(8) = 9$.	
	i) Find $f(-8)$	1
	ii) Given that $g(x) = 2x^3 - 120$ find the value of $f(g(4))$	1
f)	A (-1, 4), B (-5, 7) and C (6, 9) are 3 vertices of rhombus ABCD. Find the coordinates of D.	2

End of paper