Name:

Teacher:

BMM RABS RPN

Year 11 Mathematics

Preliminary Examination

September 2nd, 2008

Instructions

- Attempt Questions 1-7
- All questions are of equal value
- Answer each question in a new booklet
- All necessary working should be shown in every question
- Board approved calculators are allowed in all sections

Time Allowed: 2 hours

Total Marks: 84

Ouestion 1 (12 Marks) Start a new booklet Marked by BMM In a weekend garage sale, $\frac{3}{5}$ of the items were sold on Saturday. $\frac{2}{3}$ of the remaining items were then sold on Sunday. What percentage of the items remained unsold at the end of the weekend? Simplify by removing the parentheses: $\sqrt{8}(\sqrt{2}-\sqrt{3})$ (i) $(2\sqrt{5}-\sqrt{3})^2$ (ii) 1 Solve: $x^2 + 9x = 10$ 2 Factorise completely: $m^3 + 10m^2 + 25m$ (i)

(e) Simplify:
$$\frac{1}{x+5} - \frac{1}{x-5}$$

(ii)

(f) Evaluate $255(0.0024)^{10}$ giving your answer in scientific notation correct to 3 significant figures.

End of Question 1

2

1

Question 2 (12 Marks)	Start a new booklet	Marked by BMM

(a) Solve:
$$|3-2x| > 5$$

(b) Solve:
$$\sin \beta - \frac{\sqrt{3}}{2} = 0$$
 for $0^{\circ} \le \beta \le 360^{\circ}$

(c) If
$$\frac{2}{3-\sqrt{7}} = a + b\sqrt{7}$$
, find the values of a and b.

(d) Copy or trace the diagram into your booklet.

In $\triangle ABC$, points D and E lie on lines AB and AC respectively, such that DE is parallel to BC. If AD=3 cm and BD=2 cm, find the ratio DE:BC, giving reasons.

(e) Solve the following pair of simultaneous equations:

$$2x - y = -8$$
$$3x + 2y = -5$$

End of Question 2

Question 3 (12 Marks) Start a new booklet Marked by RABS

(a) Differentiate each of the following:

(i)
$$\frac{3x}{x^2 - 2x}$$

(ii)
$$(2-3x)^7$$

(iii)
$$x\sqrt{1-x}$$
 2

(iv)
$$\sqrt[3]{x} - \frac{1}{x}$$

(b) Shade the region on the number plane where the following inequalities hold simultaneously:

$$y \ge x^2 - 1$$
$$y \le x + 1$$

(c) Copy or trace the diagram into your booklet.

In the diagram above, XB and XC bisect $\angle ABC$ and $\angle ACB$ respectively. $\angle BAC = 62^{\circ}$. Find the size of $\angle BXC$.

End of Question 3

2

2

3

(a) Solve, leaving your answers in exact form:

3

$$x^6 + 6x^3 - 16 = 0$$

(b) Find the equation of the normal to the curve $y = x^3 - 3x + 2$ at the point (2, 4).

3

(c)

The diagram above shows a vertical tower AC. Points B, C and D are in a straight line on level ground. The distance from B to D is 200m.

A surveyor found that the angle of elevation to the top of the tower from point B was 38°. She then moved to point D and measured the angle of elevation as 54°.

- (i) Copy or trace the diagram and fill in all the information given.
- (ii) Show that the length $AD = \frac{200 \sin 38^\circ}{\sin 16^\circ}$
- (iii) Calculate the height of the tower.

I

(d) A circle has the equation $x^2 - 2x + y^2 + 6y = 6$. By writing the equation in the form $(x-a)^2 + (y-b)^2 = c$, or otherwise, find the radius of the circle and the coordinates of the centre

End of Ouestion 4

Ques	tion 5 (12	Marks)	Start a new booklet	Marked by RPN		
(a)		Given that α and β are the roots of the quadratic equation $3x^2 - 5x - 1 = 0$, find the values of:				
	(i)	$\alpha + \beta$		1		
	(ii)	lphaeta		1		
	(iii)	$\alpha^2 + \beta^2$		2		
(b)	A ship sails from point A on a bearing of $237^{\circ}T$ for a distance of 423 km. The ship then turns and sails due South to point C. The bearing of A from C is found to be $41^{\circ}T$.					
	(i)	Draw a d	liagram showing the above infor	mation. 1		
	(ii)	Find the	size of $\angle BAC$.	1		
	(iii)	Calculate	e the total distance sailed by the	ship. 2		
(c)	A parabola has the equation $4y = x^2 + 4x + 8$.					
	(i)	Find its f	focal length.	1		
	(ii)	Find the	coordinates of its vertex.	1		
	(iii)	State the	equation of the axis of symmetr	y. 1		
	(iv)	Draw a n	neat sketch of the parabola.	1		

End of Question 5

Question 6 (12 Marks) Start a new booklet Marked by RPN

(a)

(vii)

In the diagram, A (0,-1), B (3, 5) and C (8,3) are points on the number plane. Copy or trace the diagram into your booklet.

(i)	Find the length of AB .	1
(ii)	Find the equation of AB .	2
(iii)	Find the equation of the line m passing through C parallel to AB .	2
(iv)	The point D lies on m such that BC is parallel to AD . Find the coordinates of D .	2
(v)	What type of quadrilateral is ABCD? Give reasons.	2
(vi)	Find the perpendicular distance from C to AB .	2

End of Question 6

Find the area of ABCD.

1

Question 7 (12 Marks)

Start a new booklet

Marked by SKB

1

3

2

NOT TO

(a)

In the diagram above, $\triangle ABC$ is isosceles with AB = AC. Points X and Y lie on AB and AC respectively such that AX = AY. Copy or trace the diagram into your booklet.

(i) Prove that $\Delta BXC \equiv \Delta CYB$

Prove that $\Delta BXC \equiv \Delta CYB$

(ii) Hence or otherwise prove that $\angle XBY = \angle YCX$

(b) A function f(x) if defined as follows:

$$f(x) = \begin{cases} \frac{1}{x} & \text{for } x > 0\\ 1 & \text{for } x = 0\\ 2^x & \text{for } x < 0 \end{cases}$$

(i) Draw a neat sketch of the graph y = f(x).

(ii) Evaluate: f(2) + f(0) + f(-2)

(c) Simplify: $2\cos^2 B + 3\sin^2 B - 2$

End of Question7
End of Examination

2008 UR. II PRELIM EXAM.

QUESTION I

(a)
$$\frac{3}{5} + \frac{2}{3} \times \frac{2}{5} = \frac{13}{15}$$

UNSOLD = $\frac{2}{15} = \frac{13 \cdot 3}{15}$

(i)
$$(2\sqrt{5}-\sqrt{3})(2\sqrt{5}-\sqrt{3})$$

= $4\times5-4\sqrt{15}+3$
= $23-4\sqrt{15}$

(a) (i)
$$m(m^2 + 10m + 25)$$

= $m(m+5)^2$

(i)
$$x^3 - \frac{1}{8} = (x - \frac{1}{2})(x^2 + \frac{1}{2}x + \frac{1}{4})\sqrt{\frac{x^2 + \frac{1}{2}x + \frac{1}{4}}{x^2 + \frac{1}{4}})}$$

$$\underbrace{(x-5)}_{(x+5)(x-5)} - \underbrace{(x+5)}_{(x+5)(x-5)}$$

$$\underbrace{-10}_{x^2-25}$$

$$(f) = 1.62 \times 10^{-24}$$

QUESTION 2

(a)
$$3-2x > 5$$
 $-(3-2x) > 5$
 $-2x > 2$ $-3+2x > 5$
 $x < -1 /$ $2x > 8$
 $x > 4 /$

6)
$$\sin \beta = \frac{\sqrt{3}}{2}$$

$$\beta = \sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

$$= 60^{\circ}$$

$$\sin \text{ positive in 1st } \neq 2\text{ nd Quadrants.}$$

$$\therefore \beta = 60^{\circ} \neq 120^{\circ} \implies (180^{\circ} - \Theta)$$

$$\frac{2}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}} = \frac{6+2\sqrt{7}}{9-7} = \frac{6+2\sqrt{7}}{2} = \frac{6+2\sqrt{7}}{2}$$

$$a = 3, b = 1$$

②
$$4x - 2y = -16$$
 —③ $3x + 2y = -5$ —②

$$3+2 \qquad 7x = -21$$

$$x = -3$$

Sub
$$x = -3$$
 into (3)
 $-12 - 2y = -16$
 $-2y = -4$
 $y = 2$

QUESTION 3

$$= \frac{3(x^2-2x)-3x(2x-2)}{(x^2-2x)^2}$$

$$= \frac{3x^{2}-6x-6x^{2}+6x}{(x^{2}-2x)^{2}}$$

$$= \frac{-3x^{2}}{(x^{2}-2x)^{2}}$$

(ii)
$$y' = 7(2-3x)^6 \cdot (-3)$$

= -21(2-3x)⁶

$$u = x \qquad V = \sqrt{1-x} = (1-x)^{1/2}$$

$$u' = 1 \qquad v' = \frac{1}{2}(1-x)^{-1/2}$$

$$= -\frac{1}{2}(1-x)^{-1/2}$$

$$y' = Vu' + uv'$$

$$= (1-x)^{1/2} + -\frac{x}{2}(1-x)^{-1/2}$$

$$= \sqrt{1-x} - \frac{x}{2\sqrt{1-x}}$$

$$= 2(1-x) - x = \frac{2-3x}{2\sqrt{1-x}}$$

$$(iv) y = x^{1/3} - x^{-1}$$

$$y' = \frac{1}{3}x^{-\frac{2}{3}} + x^{-2}$$

$$= \frac{1}{3\sqrt[3]{x^2}} + \frac{1}{x^2}$$

The second representation of the

6

· correct graphs

· regions /

©
$$62^{\circ} + 2a + 2b = 180^{\circ} \checkmark$$

 $2a + 2b = 118^{\circ}$
 $a + b = 59^{\circ} \checkmark$
 $\angle BXC + a + b = 180^{\circ}$
 $\angle BXC + 59^{\circ} = 180^{\circ}$
 $\angle BXC = 121^{\circ} \checkmark$

(a) Let
$$X = x^3$$

$$(x+8)(x-16=0)$$

 $(x+8)(x-2)=0$
 $x=-8 \text{ or } z$

$$x^3 = -8002$$

$$2 = -2 \text{ or } 3/2 \sqrt{2}$$

(b)
$$y' = 3x^2 - 3$$

Gradient = $3 \times 2^2 - 3$ (sub in $x = 2$)
$$= 9$$

Normal =
$$-\frac{1}{m}$$
 = $-\frac{1}{q}$

pt/grad. formula:

$$y-4 = -\frac{1}{9}(x-2)$$

$$9y-36=-x+2$$

Sine rule:

$$\frac{AD}{\sin 38^{\circ}} = \frac{200}{\sin 16^{\circ}}$$

$$AD = \frac{200 \sin 38^{\circ}}{\sin 16^{\circ}}$$

$$5in 54^{\circ} = \frac{o}{h}$$

$$= \frac{AC}{AD} \implies AC = AD \sin 54^{\circ}$$

$$AC. = \frac{200 \sin 38^{\circ} \cdot \sin 54^{\circ}}{\sin 16^{\circ}}$$

= 361.4028... m

$$2x^{2}-2x+1+y^{2}+6y+9=6+1+9$$

$$(x-1)^{2}+(y+3)^{2}=16$$

$$\therefore radius = 516=4$$

$$centre = (1,-3)$$

QUESTION 5

$$\text{(i)} d\beta = \frac{c}{a} = \frac{-1}{3} /$$

(III)
$$(\lambda + \beta)^2 = \lambda^2 + 2\lambda\beta + \beta^2$$

 $d^2 + \beta^2 = (\lambda + \beta)^2 - 2\lambda\beta$
 $= (5/3)^2 - 2(-1/3)$
 $= 34/9$

(ii) Add point X above to help.

LBCA = LCAX (alternate Ls on

// lines)

LCAX = 41°

LBAX = 237° - 180°

(iii) Sine rule:

$$\frac{BC}{Sin 16°} = \frac{423}{Sin 41°} \Rightarrow BC = \frac{423 sin 16°}{sin 41°}$$
= 177.7 km/

.. TOTAL DISTANCE = 600.7km /

- (1) FROM THE EQ'N:
- (iii) As x coord is 2, the Axis of sym. Is x=2

QUESTION 6

(1)
$$AB = \sqrt{(3-0)^2 + (5+1)^2}$$

= $\sqrt{9+36}$
= $\sqrt{45}$ UNITS OR $3\sqrt{5}$

(i) AB gradient =
$$\frac{5+1}{3-0} = \frac{6}{3} = 2$$
.

USING PT./GRAD:

$$y-5 = 2(x-3)$$

$$y-5 = 2x-6$$

$$2x-y-1=0$$

(iii) AB gradient = M gradient (11 lines)

USING PT. /GRAD:

$$y-3 = 2(x-8)\sqrt{y-3} = 2x-16$$
 $2x-y-13=0$

(iv) BC gradient =
$$\frac{3-5}{8-3} = -\frac{2}{5}$$

USING PT/GRAD ON AD:

$$y+1 = -\frac{2}{5}(x-0)$$

$$5y+5 = -2x$$

$$2x+5y+5 = 0$$

SOLVE SIM. WITH EQN OF M:

$$2x + 5y + 5 = 0$$
 — 0
 $2x - y - 13 = 0$ — 2

① - ②
$$6y + 18 = 0 \Rightarrow \frac{\text{co-ords}}{(5, -3)} \checkmark$$

$$6y = -18$$

$$y = -3$$

SUB INTO
$$O$$
: $x = 5$

(V) PARALLELOGRAM. (2 PAIRS OF OPP.)

SIDES

(VI)
$$d = \frac{|ax, +by, +c|}{\sqrt{a^2 + b^2}} = \frac{|2x/8| + (3) - 1|}{\sqrt{2^2 + 1^2}}$$

 $= \frac{12}{\sqrt{5}}$ UNITS $\sqrt{\frac{2^2 + 1^2}{5}}$

$$= 3.5 \times \frac{12}{5}$$
FROM (VI)
$$= 36 \text{ UNITS}^{2}$$

QUESTION 7

•
$$AB-AX = AC-A4$$

: $BX = 4C$ (given)

· BC is common

$$\triangle BXC \equiv \triangle CUB (SAS) /$$

(i) · L×CB = L4BC (corresp. Ls in congr.
$$\triangle$$
s) /

TOTAL DELLA

(In DS XBD and YCD!) or (ii) XB=YC / consider

me equal)

< x 0 B = < YD </pre>

Δ×BD ₹ Ξ ΔYCD(AAS)

Ccarr angles of congruent As are equal (I AS ABYOMACX =)

LA is commen AB = AC (give)

ABY = DACX CAS) => < XBX = LYCX

(down angles of congruent Ds are equal)