Year 11 Preliminary Mathematics
 Yearly Exam 2012

Name: \qquad

Tick your class/teacher

11 M 1	
11 M 2	
11 M 3	
11 M 4	
11 M 5	

Examiner:

Time Allowed: 2 hours plus 5 minutes reading time
Start each question in a new booklet (5 booklets)
All questions are of equal value
You must show all necessary working
Full marks may not be awarded for careless or badly arranged work
Only calculators approved by he Board of Studies may be used
Include your name and the question number on the front of each booklet
All students to remain in the exam centre until the conclusion of the examination

	MC	Q1	Q2	Q3	Q4	Q5	Total	$\%$
Total								
Marks								
	10	14	14	14	14	14	80	$\%$

Answer these multiple choice questions on the sheet provided at the back

1 The correct factorisation of $8 x^{3}-125$ is
A $(2 x-5)^{3}$
B $\quad(2 x-5)\left(4 x^{2}+10 x+25\right)$
C $(2 x+5)\left(4 x^{2}-10 x+25\right)$
D $8(x-5)\left(x^{2}-5 x+25\right)$

2 The graph shown has equation

A $y=|x+3|+1$
B $\quad y=|x-3|+1$
C $\quad y=|x-3|-1$
D $\quad y=|x+3|-1$

3 The value of $\sec 240^{\circ}$ is
A 2
B $\frac{2}{\sqrt{3}}$
C $\quad-2$
D $-\frac{2}{\sqrt{3}}$

4 A function is defined for $x=a$. It is defined for other values of $x . \frac{\lim }{x \rightarrow a} f(x) \neq f(a)$ Therefore the function
A is continuous at $x=a$
B is differentiable at $x=a$
C is not continuous at $x=a$
D cannot be determined

5 In simplified form, the algebraic expression $\frac{x+5}{(x-3)(x+1)}-\frac{x-1}{x^{2}-x-2}$ can be written as
A $\frac{7 x-13}{(x+1)(x-2)(x-3)}$
B $\frac{-x-13}{(x+1)(x-2)(x-3)}$
C $\frac{7 x-7}{(x+1)(x-2)(x-3)}$
D $\frac{-x-7}{(x+1)(x-2)(x-3)}$

6 A function possesses the property that $f(-x)=-f(x)$. Which of the following graphs could represent the function?
A

B

C

D

7 What is the equation for a circle of radius 9 units, which has its centre at $(-2,5)$
A $\quad(x-2)^{2}+(y+5)^{2}=81$
B $(x+2)^{2}+(y-5)^{2}=81$
C $\quad(x-2)^{2}+(y+5)^{2}=3$
D $\quad(x+2)^{2}+(y-5)^{2}=3$

8 Complete the following trigonometric identity $\operatorname{cosec}^{2} x=$
A $\quad 1+\cot ^{2} x$
B $\sec ^{2} x-1$
C $1-\tan ^{2} x$
D $\quad \cos ^{2} x-\sin ^{2} x$

9 A triangle $X Y Z$ has $x=14 \mathrm{~cm}, y=13 \mathrm{~cm}, \angle Z=105^{*}$. The side length z can be calculated using
A Cosine Rule
B Sine Rule
C cannot be calculated
D It is the ambiguous case

10 A triangle $M N P$ has $m=12 \mathrm{~cm}, n=14 \mathrm{~cm}, p=10.5 \mathrm{~cm}$. Its smallest angle to the nearest degree is
A 46^{0}
B $\quad 47^{0}$
C 39^{0}
D 40^{0}

Outcome P3 Performs arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
a) Factorise:
(i) $x^{2}-11 x$
(ii) $3 x^{2}-4 x-7$
(iii) $x^{3}+8$

2
(b) Solve:
(i) $\frac{8}{x}+2=\frac{16}{x}$

2
(ii) $|2 x-6| \leq 4$

3
Graph your solution on the number line
(c) Solve the simultaneous equations:

$$
\begin{align*}
& x y+y^{2}=54 \tag{2}\\
& x+y=9
\end{align*}
$$

(d) Find 0.71 as a fraction in simplest terms

Q12 Begin a fresh booklet for Q2

Outcome P3 Performs arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
(a) Find the value of

1

$$
27^{\frac{1}{3}}+2^{-2}
$$

(b) Give the value of $1.79^{1.35}$ correct to 3 decimal places
(c) Simplify the following $2 \sqrt{20}+\sqrt{45}$
(d) Rationalise the denominator and simplify fully

$$
\frac{4+\sqrt{2}}{\sqrt{5}+\sqrt{3}}
$$

(e) Expand and simplify $(3+2 \sqrt{5})(2-\sqrt{5})$
(f) Find values for a and b by completing the square

$$
x^{2}-8 x+4=(x-a)^{2}-b
$$

(g) Find the following trigonometric ratios in exact terms
(i) $\cos 240^{\circ}$
(ii) $\cot 330^{\circ}$
(h) Show that $\cos ^{2}(90-\theta) \cot \theta=\sin \theta \cos \theta$

Q13 Begin a fresh booklet for Q13

Outcome P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques

(a) The diagram shows an isosceles triangle $\triangle K L N$ With $K L=K N . K M$ is constructed to bisect $L N$.
(i) Complete the proof that $\triangle K M N \equiv \triangle K M L$

KM common
$K N=K L$ \qquad
\qquad
\qquad by construction
$\Delta K M N \equiv \triangle K M L$ \qquad
(ii) Complete the proof that an isosceles triangle 1 has base angles equal
(b) $\mathrm{BC} / / \mathrm{DE}$.
(i) Prove $\triangle A B C \| \triangle A D E$
(ii) $A D=7, B D=3, C E=4.5$. Find $A C$

(c) A tree is situated on a level field.

The sun is at an angle of elevation of 31°. The length of the shadow is 47 m .
Draw a diagram to represent this information.
Calculate the height of the tree.
(d) Calculate the size of the angle A to the nearest whole degree.

Q14 Begin a fresh booklet for Q14

Outcome P5 Understands the concept of a function and the relationship between a function and its graph
(a) What is the natural domain and the range for $y=\sqrt{9-x^{2}}$

(b) The accompanying graph shows $\mathbf{3}$ a function. $y=\frac{x^{4}-5 x^{2}+4}{4}$
Is it is odd, even or neither?
Give both a graphical and an algebraic reason for your decision.
(c) (i) Graph the function $y=\frac{6}{x}$ include at least 1 point.
(ii) Is the function continuous? Be specific.
(d) Shade the region specified by
(e) (i) Sketch the relation $x=y^{2} \quad 1$
(ii) Is this relation a function? You must give a reason for your decision.

You may make marks on your sketch to help with your justification.

Q15 Begin a fresh booklet for Q15

Outcome P6 Relates the derivative of a function and its graph
(a) $\frac{d y}{d x}=3-2 x$
(i) Find $f^{\prime}(3) \quad 1$
(ii) For what value of x does the tangent have a gradient of $5 \quad 1$
(b) Find $f^{\prime}(x)$ for each of the following
(i) $f(x)=x^{3}-2 x$
(ii) $y=2 x-\frac{3}{x}$
(iii) $y=\left(x^{2}-3 x\right)^{-2}$
(c) Find the equation of the tangent to $y=x^{2}-3 \sqrt{x}$ at the point where $x=1$
(d) (i) Obtain the equation of the normal to $y=x^{2}-3$ at the point $(2,1)$
(ii) Where does this line cut the y axis? 1
(e) Obtain the coordinates of the point on $y=x^{2}-3 x+2$ 2 where the tangent is parallel to the x axis.

Multiple Choice Answer Sheet

Name:
Teacher's Name

Prelim Exam (20) Mathematics 2012

$1 B$	$2 B$	$3 C$
$4 C$	$5 A$	$6 D$
$7 B$	$8 A$	$9 . A$

10. B.
leach.

II a) i) $x(x-11)$
ii) $(3 x-7)(x+1)$
iii) $(x+2)\left(x^{2}-2 x+4\right)$
b) 1)

$$
\begin{aligned}
\frac{8}{x}+2 & =\frac{16}{x} \\
8+2 x & =16 \\
x & =4
\end{aligned}
$$

ii)

$$
\begin{aligned}
\text { i) }|2 x-6| & \leq 4 . \\
-4 \leq 2 x-6 & \leq 4 \\
2 \leq 2 x & \leq 10 \\
1 \leq x & \leq 5
\end{aligned}
$$

c)

$$
\begin{align*}
x y+y^{2} & =54 \tag{1}\\
x+y & =9 \tag{2}
\end{align*}
$$

P2 Sols Prelim finiar Uru MAtts Pz
(1) c) coutd,
from (2) $y=9-x$ sib into 0 .

$$
\begin{aligned}
& x(9-x)+(9-x)^{2}=54 \\
& 9 x-x^{2}+81-18 x+x^{2}=54 \\
& 81-9 x \\
&=54 \\
& 27=9 x \\
& 3=x
\end{aligned}
$$

d)

$$
\begin{aligned}
x & =0.7 i \quad y=6 \\
10 x & =7.1 i \\
9 x & =6.4 \\
x & =\frac{64}{90}=\frac{32}{45}
\end{aligned}
$$

(lfor pragren)

$$
2
$$

1

$$
1
$$

12a) $3+\frac{1}{4}=3.25$.
b) 2.195
c) $2 \times 2 \sqrt{5}+3 \sqrt{5}$.

$$
7 \sqrt{5}
$$

d) $\frac{4+\sqrt{2}}{\sqrt{5}+\sqrt{3}} \frac{(\sqrt{5}-\sqrt{3})}{\sqrt{5}-\sqrt{3})}$

$$
\frac{4 \sqrt{5}-4 \sqrt{3}+\sqrt{10}-\sqrt{6}}{2}
$$

e)

$$
\begin{aligned}
(3+2 \sqrt{5})(2-\sqrt{5}) & =6-10-3 \sqrt{5}+4 \sqrt{5} \\
& =\sqrt{5}-4
\end{aligned}
$$

YR II Prtlim final Matts (20) 2012 P3.
f)

$$
\begin{array}{cl}
x^{2}-8 x+4 & =x^{2}-8 x+16-12 \\
=(x-4)^{2}-12 & a=4 \\
& b=12
\end{array}
$$

g)

$$
\begin{aligned}
& \cos 240=-\cos 60=-\frac{1}{2} \\
& \cot 330=\frac{-1}{\tan 30}=-\sqrt{3} .
\end{aligned}
$$

h) $\cos ^{2}(90-\theta) \cot \theta$

$$
\begin{aligned}
& =\sin ^{2} \theta \times \frac{\cos \theta}{\sin \theta} \\
& =\sin \theta \cos \theta \text { as reg } \frac{1}{2}
\end{aligned}
$$

Q13. given
$L M=M N$
SSS rule
$L L=L N$ correxponding $L_{\text {s in }}$ congrvent Δ s.
$\angle A B C=\angle A B E$. correxpanding $\angle s$ parallel luis.
$\angle A$ commen (ar $\angle A C B=\angle A E D$.
$\triangle A B L \| \triangle A D E$ equiengular
ii)

6

11 Prelim Final Mathematics $2 e 12,4$ $\sin \underset{E}{\text { E }}$

d)

$$
\begin{aligned}
\frac{\sin A}{11.3} & =\frac{\sin 107}{15.2} \\
\sin A & =.7109 \ldots . \\
A & =45 . \text { or } 135 . \\
& \text { but. } 135 \text { would be too big y } \\
\therefore A & =45
\end{aligned}
$$

14a) Domaine $-3 \leq x \leq 3$.

$$
\text { Rage } \quad 0 \leq y \leq 3
$$

b) even
symmetric about y axis.

$$
\left.f(-x)=x^{4}-\frac{5 x^{2}+4}{4}\right)=f(x)
$$

c) i) $P T O$
ii) Not contin-vous when

$$
x=0 .
$$

11 Prellin firal AT 2012 MATHEMPTICS. PS.
c) i)

e)

ii) Not fupction.
for exauple if $x=4 y= \pm 2$
15. $f^{\prime}(3)=3-2 \times 3=-2$
a)

$$
\begin{aligned}
5 & =3-2 x \\
2 x & =-2 \\
x & =-1 .
\end{aligned}
$$

b), i) $f^{\prime}(x)=3 x^{2}-2$

2
mut have $\geqslant 1$ point specitied

1 for $0+$ 1 for shadli,

Prelim final At sols MAtitematics zolz p 6

15b)

$$
\begin{align*}
f(x) & =2+3 x^{-2} \\
& =2+\frac{3}{x^{2}}
\end{align*}
$$

iii)

$$
\begin{aligned}
& f^{\prime}(x)=-2\left(x^{2}-3 x\right)^{-3} \\
& \times 2 x-3 \\
& =\frac{-4 x+6}{\left(x^{2}-3 x\right)^{3}}
\end{aligned}
$$

$$
\times 2 x-3
$$

c)

$$
\begin{aligned}
& y=x^{2}-3 x^{\frac{1}{2}} \\
& y^{\prime}=2 \pi-1 \frac{1}{2} x^{-\frac{1}{2}} \\
& f(1)=2-1 \frac{1}{2}=\frac{1}{2} \\
& y_{1}=1-3=-2 . \\
& y+2=\frac{1}{2}(x-1) \\
& y=\frac{1}{2} x-2 \frac{1}{2}
\end{aligned}
$$

dj)

$$
\begin{gathered}
y_{M_{N}}^{\prime}=2 x \quad f^{\prime}(2)=4 \\
y-1=-\frac{1}{4}(x-2) \\
4 y-4=-x+2 . / \operatorname{on}^{2} y=-\frac{1}{4} x+\frac{1}{2} \\
x+4 y-6=0
\end{gathered}
$$

y axis $x=0 . \quad y=1 \frac{1}{2}$.
e)

$$
\begin{array}{ll}
y^{\prime}=22-3 & \text { if } y^{\prime}=0 \quad x=1 \frac{1}{2} \\
f^{\prime} \frac{1}{2}=-\frac{1}{4} & \left(1 \frac{1}{2},-\frac{1}{4}\right)
\end{array}
$$

no need to render in simplified form (-1) if error made.

