\qquad

Fort Street High School

201I Assessment task 3

Mathematics

Time allowed: 90 minutes

Outcomes Assessed	Questions	Marks
Demonstrates the ability to manipulate and simplify numeric and algebraic expressions.	1	
Solves problems involving inequalities, indices and logs.	2	3,4
Synthesises mathematical understanding and applies appropriate techniques to solve problems involving linear functions and parabolas.	5,6	
Manipulates algebraic expressions to solve problems with the locus and the parabola.		

Question	1	2	3	4	5	6	Total (60)	$\%$
Marks								

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question.

Marks may be deducted for careless or badly arranged work.

- Board - approved calculators may be used
- Each Question is to be started in a new booklet.
a) Evaluate $-7-|-5|$
b) Factorise $x^{3}-27$
c) Find the values of a and b if $\frac{5}{1+\sqrt{5}}=a+b \sqrt{5}$
d) Solve $|2-3 x|<5$
e) Simplify without negative indices $\frac{1+x^{-1}}{x-x^{-1}}$
f) \quad Simplify $\sqrt{72}-\sqrt{50}$ 2
a) Evaluate $\log _{3} 11$ correct to 2 significant figures.
b) Simplify $\frac{3 \log _{2} 8}{\log _{3} 9}$
c) Solve the equation $2\left(\log _{2} x\right)^{2}-7 \log _{2} x+3=0$
d) The diagram shows the graph of the function $y=4 x-x^{2}$

i) Find the range of the function. 2
ii) Write down a pair of inequalities that specify the shaded region.
a) Find the value of x giving a reason for your answer

b) i) Sketch the parabola $x^{2}=12 y$ clearly showing the focus and directrix.
ii) Explain why an end point of the latus rectum is given by $(6,3)$.
iii) A line, l, through the focus of the parabola makes an angle of inclination of 45° with the x - axis.

Find the equation of the line, l, in general form.
iv) Hence find the shortest distance from $(6,3)$ to the line l.

Give your answer in exact form.
a) In the diagram, points A, B and C have coordinates $(0,3),(2,0)$ and $(0,-1)$ respectively. $A D \| B C$ and $A D \perp C D$.

NOT TO SCALE

Copy this diagram into your answer booklet.
(i) Show that the gradient of the line $B C$ is equal to $\frac{1}{2}$.
(ii) Show that the equation of the line $A D$ is $x-2 y+6=0$.
(iii) Find the equation of line CD. Give your answer in general form.
(iv) By solving simultaneously the equations from (ii) and (iii), find the coordinates of point D.
(v) Find the area of the quadrilateral $A B C D$.
a) Let α and β be the roots of the equation $x^{2}-5 x+2=0$.

Find the values of
i) $\alpha+\beta$
ii) $\quad \alpha \beta$
iii) $\quad(\alpha+1)(\beta+1)$
b) The quadratic equation $P(x)$ is given by $P(x)=x^{2}-2(k-3) x+(k-1)$.
i) Find the values of k for which $P(x)=0$ has equal roots.
ii) Find the range of values of k for which the quadratic function is positive definite.
c) Find the value of m if one root of the function $y=x^{2}-2 m x+(m+3)$ is three times the other.
a) If $a x(x-b)+(x-c) \equiv 2 x^{2}-x-1$, find the values of a, b and c.
b) A point $P(x, y)$ moves so that its distance from the point $A(6,0)$ is twice its distance from the point $B(0,6)$.

Find the equation of the locus and describe it geometrically.
c) A parabola has the equation $x=12+4 y-y^{2}$.
i) Find the coordinates of the vertex 2
ii) Find the focal length 1
iii) Find the equation of the directrix $\mathbf{1}$
iv) Hence sketch $x=12+4 y-y^{2}$

Fort Street High School

201 I Assessment task 3

Mathematics

Solutions

Question 1. (10 marks)

a) Evaluate $-7-|-5|$

Solution

$$
\begin{aligned}
-7-|-5| & =\quad-7-5 \\
& =\quad-12
\end{aligned}
$$

Marking Guideline:

1 For correct response
b) Factorise $x^{3}-27$

Solution

$$
x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)
$$

c) Find the values of a and b if $\frac{5}{1+\sqrt{5}}=a+b \sqrt{5}$

Solution

$$
\begin{aligned}
\frac{5}{1+\sqrt{5}} & =\frac{5}{1+\sqrt{5}} \times \frac{1-\sqrt{5}}{1-\sqrt{5}} \\
& =\quad \frac{5-5 \sqrt{5}}{1-5} \\
& =\quad \frac{5-5 \sqrt{5}}{-4} \\
& =\quad-\frac{5}{4}+\frac{5}{4} \sqrt{5} \\
& \Rightarrow \quad a=-\frac{5}{4}, b=\frac{5}{4}
\end{aligned}
$$

Marking Guideline:

2 For correct response

1 For finding $\frac{5-5 \sqrt{5}}{1-5}$
d) Solve $|2-3 x|<5$

Solution

$$
\begin{array}{rr}
(2-3 x)<5 & \text { or } \\
-3 x<3 & (2-3 x)>-5 \\
x>-1 & -3 x>-7 \\
& x<\frac{7}{3}
\end{array}
$$

Marking Guideline:

2 For correct response
1 For one correct answer
e) Simplify without negative indices $\frac{1+x^{-1}}{x-x^{-1}}$

Solution

$$
\begin{aligned}
\frac{1+x^{-1}}{x-x^{-1}} & =\frac{1+\frac{1}{x}}{x-\frac{1}{x}} \\
& =\frac{\frac{x}{x}+\frac{1}{x}}{\frac{x^{2}}{x}-\frac{1}{x}} \\
& =\frac{\frac{x+1}{x}}{\frac{x^{2}-1}{x}} \\
& =\frac{x+1}{x} \times \frac{x}{x^{2}-1} \\
& =\frac{x+1}{x^{2}-1} \\
& =\frac{x+1}{(x+1)(x-1)} \\
& =\frac{1}{x-1}
\end{aligned}
$$

Marking Guideline:

2 For correct response

1 For finding
For finding $\frac{\frac{x+1}{x}}{\frac{x^{2}-1}{x}}$
f) Simplify $\sqrt{72}-\sqrt{50}$

Solution

$$
\begin{aligned}
\sqrt{72}-\sqrt{50} & =\sqrt{36} \times \sqrt{2}-\sqrt{25} \times \sqrt{2} \\
& =6 \sqrt{2}-5 \sqrt{2} \\
& =\sqrt{2}
\end{aligned}
$$

```
Marking Guideline:
2 For correct response
For finding 6\sqrt{}{2}-5\sqrt{}{2}
```

a) Evaluate $\log _{3} 11$ correct to 2 significant figures.

Solution

$$
\begin{aligned}
\log _{3} 11 & =\frac{\log _{10} 11}{\log 3} \\
& =\quad 2.2
\end{aligned}
$$

```
Marking Guideline:
1 For correct response
```

Correct to two significant figures.
b) Simplify $\frac{3 \log _{2} 8}{\log _{3} 9}$

Solution

$$
\begin{aligned}
\frac{3 \log _{2} 8}{\log _{3} 9} & =\frac{3 \log _{2} 2^{3}}{\log _{3} 3^{2}} \\
& =\frac{9 \log _{2} 2}{2 \log _{3} 3} \\
& =\frac{9}{2}
\end{aligned}
$$

Marking Guideline:
2 For correct response
1 For correct use of one log law
c) Solve the equation $2\left(\log _{2} x\right)^{2}-7 \log _{2} x+3=0$

Solution

$$
2\left(\log _{2} x\right)^{2}-7 \log _{2} x+3=0
$$

let $m=\log _{2} x$ then

$$
\left.\begin{array}{rlrl}
2(m)^{2}-7 m+3 & =0 & \\
(2 m-1)(m-3) & =0 & & \\
2 m-1 & =0 & \text { or } & m-3
\end{array}\right)=0 \text { m } \begin{array}{rlrl}
& & \\
m & =\frac{1}{2} & & m
\end{array}
$$

but $m=\log _{2} x$
so

$$
\begin{aligned}
\log _{2} x & =\frac{1}{2} \\
x & =2^{\frac{1}{2}} \\
& =\sqrt{2}
\end{aligned}
$$

Marking Guideline:
3 For correct response or
For finding one correct answer or

For finding $(2 m-1)(m-3)$
d) The diagram shows the graph of the function $y=4 x-x^{2}$

i) Find the range of the function.

Solution

The range will be all values of y less than (or equal to) the y ordinate of the vertex.
Finding the vertex:

$$
\begin{aligned}
x & =\frac{-b}{2 a} \\
& =\frac{-(4)}{2(-1)} \\
& =2
\end{aligned}
$$

When $x=2$,

$$
\begin{aligned}
y & =4(2)-(2)^{2} \\
& =4
\end{aligned}
$$

Therefore the range is $\quad y \leq 4$
ii) Write down a pair of inequalities that specify the shaded region.

Solution

The shaded region will be below the graph and above the line $y=0$.

Therefore the inequality is $y \leq 4 x-x^{2}$ and $\quad y \geq 0$

Marking Guideline:
2 For correct response
1 For correct procedure with an error
a) Find the value of x giving a reason for your answer

Solution
Intercepts of parallel lines cut by transversals are in equal ratio.

$$
\begin{aligned}
\frac{x}{6} & =\frac{6}{8} \\
x & =\frac{36}{8} \\
& =4 \cdot 5
\end{aligned}
$$

> Marking Guideline:

3 For correct response or
2 For correct value with no reason or
$1 \quad$ For finding $\frac{x}{6}=\frac{6}{8}$
b) i) Sketch the parabola $x^{2}=12 y$ clearly showing the focus and directrix.

Solution

ii) Explain why an end point of the latus rectum is given by $(6,3)$.

Solution

Method 1.

The length of the latus rectum is given by $4 a$.
Since $a=3$ the length would be $4 \times 3=12$ units.
Since the latus rectum is symmetrical about the axis, half the latus rectum would be 6 units.
This (half) length runs parallel to the x axis starting from the focus $(0,3)$. This places the end point at $(6,3)$

Method 2.

The equation of the latus rectum is $y=3$ and is a focal chord of the parabola.

Substituting $y=3$ into $x^{2}=12 y$ to find the points of intersection

$$
\begin{aligned}
& x^{2}=12(3) \\
& x^{2}=36 \\
& x= \pm 6
\end{aligned}
$$

Therefore one end point would be $(6,3)$

```
Marking Guideline:
1 For correct response
```

iii) A line, I, through the focus of the parabola makes an angle of inclination of 45° with the x - axis. Find the equation of the line, I, in general form.

Solution

The gradient of the line if found by $m=\tan \theta$

$$
\begin{aligned}
& =\tan 45^{\circ} \\
& =1
\end{aligned}
$$

The equation of the line is found by

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =1(x-0) \\
x-y+3 & =0
\end{aligned}
$$

Marking Guideline:
2 For correct response
1 For finding the gradient
iv) Hence find the shortest distance from $(6,3)$ to the line l.

Give your answer in exact form.

Solution

Shortest distance is perpendicular distance:

$$
\begin{aligned}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|1(6)-1(3)+3|}{\sqrt{1^{2}+(-1)^{2}}} \\
& =\frac{6}{\sqrt{2}}
\end{aligned}
$$

a) In the diagram, points A, B and C have coordinates $(0,3),(2,0)$ and $(0,-1)$ respectively.
$A D \| B C$ and $A D \perp C D$.

NOT TO SCALE

Copy this diagram into your answer booklet.
(i) Show that the gradient of the line $B C$ is equal to $\frac{1}{2}$.

Solution

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{0--1}{2-0} \\
& =\frac{1}{2}
\end{aligned}
$$

Marking Guideline:

1 For correct response
(ii) Show that the equation of the line $A D$ is $x-2 y+6=0$.

Solution

$A D$ is parallel to $B C \Rightarrow \quad m_{A B}=m_{B C}=\frac{1}{2}$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =\frac{1}{2}(x-0) \\
x-2 y+6 & =0
\end{aligned}
$$

(iii) Find the equation of line CD. Give your answer in general form.

Solution

Since the line $C D$ is perpendicular to $A D$ the gradient of $C D$ can be found using

$$
\begin{aligned}
m_{1} m_{2} & =-1 \\
\frac{1}{2} m_{C D} & =-1 \\
m_{C D} & =-2
\end{aligned}
$$

The equation of the line can now be found using the point gradient formula and point C

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y--1 & =-2(x-0) \\
2 x+y+1 & =0
\end{aligned}
$$

Marking Guideline:

2 For correct response
1 For finding $m_{C D}=-2$
(iv) By solving simultaneously the equations from (ii) and (iii), find the coordinates of point D.

Solution

$$
\begin{array}{cc}
2 x+y+1=0 & ---1 \\
x-2 y+6=0 & ---2
\end{array}
$$

1. $\times 2$

$$
\begin{aligned}
& 4 x+2 y+2=0 \\
&---1 a \\
& x-2 y+6=0
\end{aligned} \quad---2 .
$$

1a. +2

$$
\begin{aligned}
5 x+8 & =0 \\
5 x & =-8 \\
x & =-\frac{8}{5}
\end{aligned}
$$

Sub. $x=-\frac{8}{5}$ into 2. $\quad-\frac{8}{5}-2 y+6=0$

$$
\begin{aligned}
8+10 y-30 & =0 \\
10 y & =22 \\
y & =\frac{22}{10} \\
& =2 \cdot 2
\end{aligned}
$$

Therefore point D is $(-1 \cdot 6,2 \cdot 2)$

Marking Guideline:

2 For correct response
1 For correct procedure with one error
(v) Find the area of the quadrilateral $A B C D$.

Solution

Break the quadrilateral into two triangles $A C D \& A B C$

NOT TO SCALE

Area of triangle $A B C=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \times O B \times A C \\
& =\frac{1}{2} \times 2 \times 4 \\
& =4 u^{2}
\end{aligned}
$$

Area of triangle $A C D=\frac{1}{2} b h$

$$
\begin{aligned}
& =\frac{1}{2} \times A D \times A C \\
& =\frac{1}{2} \times 1 \cdot 6 \times 4 \\
& =3 \cdot 2 u^{2}
\end{aligned}
$$

Total area of quadrilateral $A B C D=7 \cdot 2 u^{2}$

3 For correct response or
2 For correct procedure with one arithmetic error or

1 For finding area $A B C$
a) Let α and 8 be the roots of the equation $x^{2}-5 x+2=0$.

Find the values of
i) $\quad \alpha+\beta$

Solution

$$
\begin{aligned}
\alpha+\beta & =\frac{-b}{a} \\
& =\frac{-(-5)}{1} \\
& =5
\end{aligned}
$$

Marking Guideline:

1 For correct response
ii) $\quad \alpha \beta$

Solution

$$
\begin{aligned}
\alpha \beta & =\frac{c}{a} \\
& =\frac{2}{1} \\
& =2
\end{aligned}
$$

iii) $\quad(\alpha+1)(\beta+1)$

Solution

$$
\begin{aligned}
(\alpha+1)(\beta+1) & =\alpha \beta+\alpha+\beta+1 \\
& =2+5+1 \\
& =8
\end{aligned}
$$

Marking Guideline:

1 For correct response

Marking Guideline:

2 For correct response
1 For expanding $(\alpha+1)(\beta+1)$
b) The quadratic equation $P(x)$ is given by $P(x)=x^{2}-2(k-3) x+(k-1)$.
i) Find the values of k for which $P(x)=0$ has equal roots.

Solution
Method 1. The quadratic has equal roots when the discriminant is 0 .

Note:

$$
\Delta=b^{2}-4 a c
$$

$$
\begin{aligned}
b^{2}-4 a c & =0 \\
{[-2(k-3)]^{2}-4.1 .(k-1) } & =0 \\
4(k-3)^{2}-4 k+4 & =0 \\
4\left(k^{2}-6 k+9\right)-4 k+4 & =0 \\
k^{2}-6 k+9+1 & =0 \\
k^{2}-7 k+10 & =0 \\
(k-5)(k-2) & =0 \\
k & =5 \quad \text { or } \quad k=2
\end{aligned}
$$

Method 2. Let the roots be α and α. Then

$$
\begin{aligned}
\alpha+\alpha & =\frac{-b}{a} & \alpha \cdot \alpha & =\frac{c}{a} \\
2 \alpha & =\frac{-[-2(k-3)]}{1} & \alpha^{2} & =\frac{k-1}{1} \\
\alpha & =k-3 & \alpha^{2} & =k-1
\end{aligned}
$$

sub α into α^{2}

$$
\begin{aligned}
(k-3)^{2} & =k-1 \\
k^{2}-6 k+9 & =k-1 \\
k^{2}-7 k+10 & =0 \\
(k-5)(k-2) & =0 \\
k & =5 \text { or } k=2
\end{aligned}
$$

ii) Find the range of values of k for which the quadratic function is positive definite.

Solution

The quadratic is positive definite if the discriminant is less than 0.

Note: this is not the graph of $P(\mathrm{x})$
but $k^{2}-7 k+10$

From part i) the discriminant sipmlifies to $k^{2}-7 k+10$

$$
\begin{gathered}
k^{2}-7 k+10<0 \\
(k-5)(k-2)<0
\end{gathered}
$$

From the graph of $k^{2}-7 k+10$ this occurs when

$$
2<k<5
$$

Marking Guideline:

2 For correct response
1 For correct procedure with one error
c) Find the value of m if one root of the function $y=x^{2}-2 m x+(m+3)$ is three times the other.

Solution

Let the roots be α and 3α then

$$
\begin{array}{rlrl}
\alpha+3 \alpha & =\frac{-b}{a} & \alpha .3 \alpha & =\frac{c}{a} \\
4 \alpha & =\frac{-(-2 m)}{1} & 3 \alpha^{2} & =\frac{m+3}{1} \\
\alpha & =\frac{2 m}{4} & \alpha^{2} & =\frac{m+3}{3} \\
& =\frac{m}{2} &
\end{array}
$$

Substitute $\alpha=\frac{m}{2}$ into the equation for α^{2}

$$
\begin{aligned}
\left(\frac{m}{2}\right)^{2} & =\frac{m+3}{3} \\
\frac{m^{2}}{4} & =\frac{m+3}{3} \\
3 m^{2} & =4 m+12 \\
3 m^{2}-4 m-12 & =0 \\
m & =\frac{-(-4) \pm \sqrt{16-4.3 \cdot(-12)}}{2.3} \\
& =\frac{4 \pm \sqrt{160}}{6} \\
& =\frac{4 \pm 4 \sqrt{10}}{6} \\
& =\frac{2 \pm 2 \sqrt{10}}{3}
\end{aligned}
$$

a) If $a x(x-b)+(x-c) \equiv 2 x^{2}-x-1$, find the values of a, b and c.

Solution

$$
\begin{aligned}
a x(x-b)+(x-c) & \equiv 2 x^{2}-x-1 \\
a x^{2}-a b x+x-c & \equiv 2 x^{2}-x-1 \\
a x^{2}+(1-a b) x-c & \equiv 2 x^{2}-x-1
\end{aligned}
$$

Comparing coefficients

$$
c=1, a=2 \quad \begin{aligned}
1-a b & =-1 \\
1-(2) b & =-1 \\
-2 b & =-2 \\
b & =1
\end{aligned}
$$

Marking Guideline:

2 For correct response
1 For correct procedure with one error
b) A point $P(x, y)$ moves so that its distance from the point $A(6,0)$ is twice its distance from the point $B(0,6)$.

Find the equation of the locus and describe it geometrically.

Solution

$$
\begin{array}{rll}
P A & = & 2 P B \\
(P A)^{2} & = & 4(P B)^{2} \\
(x-6)^{2}+(y-0)^{2} & = & 4\left[(x-0)^{2}+(y-6)^{2}\right] \\
x^{2}-12 x+36+y^{2} & = & 4 x^{2}+4 y^{2}-48 y+144 \\
3 x^{2}+12 x+3 y^{2}-48 y+108 & = & 0 \\
x^{2}+4 x+y^{2}-16 y+36 & = & 0 \\
y^{2}-16 y & = & -36 \\
x^{2}+4 x+y & = & -36+4+64 \\
y^{2}-16 y+64 & & \\
x^{2}+4 x+4 & = & 32
\end{array}
$$

Marking Guideline:
3 For correct response or
2 For correct locus without geometric description or

1 For demonstrating some understanding

This is the locus of a circle whose centre is $(-2,8)$ with a radius of $\sqrt{32}$ units.
c) A parabola has the equation $x=12+4 y-y^{2}$.
i) Find the coordinates of the vertex

Solution

The parabola has the form $(y-k)^{2}=-4 a(x-h)$
Rewriting

$$
\begin{aligned}
x & =12+4 y-y^{2} \\
-x & =y^{2}-4 y-12 \\
-x+12+4 & =y^{2}-4 y+4 \\
(y-2)^{2} & =-x+16 \\
(y-2)^{2} & =-1(x-16)
\end{aligned}
$$

This implies the vertex is at $(16,2)$
ii) Find the focal length

Solution

$$
\begin{aligned}
4 a & =1 \\
a & =\frac{1}{4}
\end{aligned}
$$

iii) Find the equation of the directrix

Solution

Since the vertex is at $(16,2)$ and in the form $(y-k)^{2}=-4 a(x-h)$

The equation of the directrix will be parallel to the y axis and $\frac{1}{4}$ units to the right of the vertex

Therefore the equation of the directrix is $x=16 \frac{1}{4}$

Marking Guideline:

2 For correct response
1 For correct procedure with one error

Marking Guideline:

Marking Guideline:

1 For correct response
iv) Hence sketch $x=12+4 y-y^{2}$

Marking Guideline:
1 For correct response

