Hornsby Girls' High - 2006

Mathematics Preliminary Examination

Question 1 (14 marks)

a) Evaluate the following. Express your answer in Scientific

Notation correct to 3 significant figures.
(1)

$$
\frac{-0.1}{\sqrt{(0.1)^{2}+8}}
$$

b) State the exact value of $\operatorname{Cos} 210^{\circ}$
c) Show that the roots of the quadratic equation

$$
3 x^{2}-8 x+10=0 \text { are not real. }
$$

d) Find $\lim _{x \rightarrow 3} \frac{x^{2}-9}{2 x-6}$
e) Simplify: $\tan \theta \times \operatorname{Sin}\left(90^{\circ}-\theta\right) \quad 2$
f) A ship sails due south for 10 km and due west for
3 km . Calculate its bearing from its starting point.
g) Solve simultaneously: $\quad 2 x+5 y=16$

2

Question 2 (16 marks) START A NEW PAGE

a) Differentiate the following
i) $y=x^{4}-3 x^{3}+12 x$
ii) $y=(3 x+5)(8-2 x)$
iii) $y=\frac{x}{x^{2}+4}$
b) For the parabola $(x-4)^{2}=12(y+3)$ find:
i) the vertex
ii) the focus
iii) the equation of its directrix
c) For the quadratic $2 x^{2}-6 x+1=0$ find:
i) $\quad \alpha+\beta$
ii) $\alpha \beta$
iii) $\quad \alpha^{2}+\beta^{2}$
d) Solve for θ : $0 \leq \theta \leq 360^{\circ}$

$$
2 \operatorname{Sin} \theta-\sqrt{3}=0
$$

e) Solve for $x: \quad 4^{x}-9\left(2^{x}\right)+8=0$

Question 3 (15 marks) START A NEW PAGE

a) If $f^{\prime \prime}(x)=6 x-8 \quad, \quad f^{\prime}(2)=0 \quad \& \quad f(-1)=3$. 2 Find an expression for $f(x)$.
b) Find the equation of a parabola with focus (5.-3) and directrix $x=9$.
c) For the equation $y=\frac{1}{3} x^{3}-x^{2}-8 x-6 \quad$ find:
i) the y-intercept 1
ii) the stationary points and determine their nature 2
iii) any inflection points 2

Sketch the curve in the domain $-4 \leq x \leq 6$. 3
State the minimum value of the function in the above domain.
d) Find the equation of the normal to the curve
$y=\frac{1}{x^{2}}$ at the point where $x=2$. Express your answer in general form.
a) What is the range of $y=2 \sqrt{9-x^{2}}$?
b) For what values of a is the line $y=a x$ a tangent to the hyperbola $y=\frac{3}{x-2}$?
c) Differentiate: $\quad y=(\sqrt{x}+1)^{100}$
d) Consider the function $f(x)=2 x^{2}+x$
i) Find $f^{\prime}(x)$ using the First Principles Method 2
ii) Show that $\quad a\left(1+f^{\prime}(a)\right)=2 f(a)$.

2
e) Show that the line $5 x-12 y+26=0$ is a tangent
to the circle $x^{2}+y^{2}=4$
f) Find the domain over which the curve $f(x)=x^{3}-7 x^{2}+1$
is concave downwards.

Question 5 (13 marks) START A NEW PAGE

a) What is the domain of $y=\sqrt{x^{2}-3 x-4}$?
b) \$ketch a curve which is monotonic increasing and concave up 2 for all values of x.
c) Prove: $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos ^{2} \theta-\operatorname{Sin}^{2} \theta$
d) A box with a rectangular base and height h metres is open at the top and has a volume of $32 \mathrm{~m}^{3}$. The dimensions of the base of the box are $x \& y$
i) Show that the surface area (A) of the box is

$$
A=x+64\left(\frac{1}{x}+\frac{1}{y}\right)
$$

ii) Considering that for the surface area above

3 y is constant and x is the variable, show that the minimum surface area of the
box is $A=\left(16 \sqrt{y}+\frac{64}{y}\right) \mathrm{m}^{2}$.

END OF PAPER

Solutions - Year 11 Yearly Exam 2006

学 a) -3.53×10^{-2}
1)

$$
\begin{aligned}
\cos 260 & =-\cos 30 \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 3 x^{2}-8 x+10=0 \\
& \Delta=b^{2}-4 x c \\
& =64-4(3)(10) \\
& =-56<0 \therefore \text { unreal roots. } \\
& \Rightarrow \lim _{x \rightarrow 3} \frac{x^{2}-9}{2 x-6} \quad \times \neq 3 \\
& =\lim _{x \rightarrow 3}(x-3)(x+3) \\
& 2(x-3) \\
& =3 \\
& \Rightarrow \tan \theta \times \sin (90-\theta) \\
& =\frac{\sin }{\cos \theta} \times \cos 0 \\
& =\sin \theta
\end{aligned}
$$

) $\tan \theta=\frac{3}{10}$

$$
\therefore \theta=16^{\circ} 42^{\prime}
$$

\therefore bear. is $196^{\circ} 42^{\prime} T$

$$
\text { or } S 16^{\circ} 42^{\prime} w
$$

e) $4^{x}-9\left(2^{x}\right)+8=0$
let $m=2^{x}$

$$
\begin{array}{r}
\therefore m^{2}-9 m+8=0 \tag{3}\\
(m-8)(m-1)=0 \\
m=8, m=1
\end{array}
$$

but $M=2^{n}$

$$
\therefore 2^{x}=8,2^{x}=1
$$

12 a) i) $y=x^{4}-3 x^{3}+12 x$

$$
\begin{aligned}
& y^{\prime}=4 x^{3}-9 x^{2}+12 \\
& y=(3 x+5)(8-2 x) \\
& y^{\prime}=(8-2 x)(3)+(3 x+5)(-2) \\
& y^{\prime}=24-6 x-6 x-10 \\
& y^{\prime}=14-12 x
\end{aligned}
$$

Q2. (cont.)
iii)

$$
\begin{aligned}
& \text { ii) } y=\frac{x}{x^{2}+4} \\
& y^{\prime}=\frac{\left(x^{2}+4\right)(1)-x(2 x)}{\left(x^{2}+4\right)^{2}} \\
& \therefore y^{\prime}=\frac{4-x^{2}}{\left(x^{2}+4\right)^{2}}
\end{aligned}
$$

b) $(x-4)^{2}=12(y+3)$
$(x-4)^{2}=4(3)(y+3)$
i) $-\therefore$ vertex $(4,-3)$
ii) focus is $(4,0)$
iii) directrix: $y=-6$
c) $2 x^{2}-6 x+1=0$
i) $\alpha+\beta=3$
ii) $\alpha \beta=\frac{1}{2}$
iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =3^{2}-2\left(\frac{1}{2}\right) \\
& =8
\end{aligned}
$$

d) $2 \sin \theta-\sqrt{3}=0$
$\sin \theta=\frac{\sqrt{3}}{2}$
$180-6+1-6$

$$
\therefore x=3+x=0 \text {. }
$$

$$
\text { Q3. } \begin{aligned}
f^{\prime \prime}(x) & =6 x-8 \quad f^{\prime}(2)=0 \quad f(-1)=3 \\
f^{\prime}(x) & =3 x^{2}-8 x+c_{1} \\
0 & =3(2)^{2}-8(2)+c_{1} \\
\therefore c_{1} & =4 \\
\therefore f^{\prime}(x) & =3 x^{2}-8 x+4 \\
f(x) & =x^{3}-4 x^{2}+4 x+c_{2} \\
3 & =-1-4-4+c_{2} \\
\therefore c_{2} & =12 \\
\therefore f(x) & =x^{3}-4 x^{2}+4 x+12
\end{aligned}
$$

23 (cont).
.) $S(5,-3)$, directrix is $x=9$

\therefore vertex is $(7,-3)$

$$
a=2 .
$$

$$
\therefore(y+3)^{2}=-8(x-7)
$$

$$
y=\frac{1}{3} x^{3}-x^{2}-8 x-6
$$

) y-intercept is -6
) $y^{\prime}=x^{2}-2 x-8=0$ for stat pts

$$
\begin{aligned}
& (x-4)(x+2)=0 \\
& \therefore x=4, x=-2 \\
& y=-32 \frac{2}{3}, y=3 \frac{1}{3}
\end{aligned}
$$

\therefore stat pts are $\left(4,-32 \frac{2}{3}\right)$ \& $\left(-2,3 \frac{1}{3}\right)$

$$
y^{\prime \prime}=2 x-2
$$

at $x=4, y^{\prime \prime}=6>0 \therefore$ minimum at $\left(4,-32 \frac{2}{3}\right)$
at $x=-2 y^{\prime \prime}=-6<0 \quad \therefore \max$ at $\left(-2,3 \frac{1}{3}\right)$
i) For pts of inflexion $y^{\prime \prime}=0$

$$
\therefore \begin{array}{cc}
2 x-2=0 \\
y=-14 \frac{2}{3} & \frac{x}{y} \left\lvert\, \frac{0}{1} / \frac{1}{2}\right.
\end{array}
$$

\therefore chape - concavity $\therefore\left(1,-1+\frac{2}{3}\right)$ is

$24 y=2 \sqrt{9-x^{2}}$
:)

Ronge : all ral y where $0 \leqslant y \leqslant 6$.
e) Centre $(0,0) \quad r=2$

$$
\begin{aligned}
& d=\left|\frac{5(0)-12(0)+26}{5^{2}+12^{2}}\right| \\
& d=\frac{26}{13}=2 .
\end{aligned}
$$

since the perp. dist $=$ the rading of oth circle the lie must be a to ${ }^{2}$ ent.
f)

$$
\begin{aligned}
& f(x)=x^{3}-7 x^{2}+1 \\
& f^{\prime}(x)=3 x^{2}-14 x
\end{aligned}
$$

$f^{\prime \prime}(x)=6 x-14<0$ for concaute down $6 x<14$

$$
\therefore x \leq \frac{7}{3}
$$

Q5 a)

$$
4 a(a+3)=0
$$

$$
\begin{aligned}
& x^{2}-3 x-4 \geqslant 0 \\
& (x-4)(x+1) \geqslant 0 \\
& \therefore x=4, x=-1
\end{aligned}
$$

$$
\therefore a=0 \text { or } a=-3 \text {. }
$$

-).

$$
\begin{aligned}
& y=(\sqrt{x}+1)^{100} \\
& y^{\prime}=100(\sqrt{x}+1)^{99} \times \frac{1}{2} x^{-\frac{1}{2}} \\
& \therefore y^{\prime}=50(\sqrt{x}+1)^{19} \\
& \sqrt{x}
\end{aligned}
$$

c) LHS $=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}$

$$
\therefore f^{\prime}(x)=4 x+1
$$

$)$ Show that $a\left(1+f^{\prime}(a)\right)=2 f(a)$
\therefore Doma is $:\{x \in \mathbb{R}$ where $x \in-1, x \geq 4\}$
b)

$$
\text { 1) } 2 f(x)=2 x^{2}+x
$$

$$
f(x+h)=2(x+h)^{2}+(x+h)
$$

$$
\therefore f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{2(x+h)^{2}+(x+h)-2 x^{2}-x}{h}
$$

$$
=1-\frac{2 x^{2}+4 x h+2 h^{2}+x+h-2 x^{2}-x}{h}
$$

$$
=\lim _{h \rightarrow 0} K\left(\frac{x+2 h}{K}+1\right)
$$

$$
\begin{aligned}
\text { LHS } & =a(1+4 a+1) \\
& =2 a+4 a^{2} \\
& =2\left(2 a^{2}+9\right) \\
& =2 f(a) \\
\therefore \text { LHS } & =\text { RHS }
\end{aligned}
$$

$$
=\frac{1-\tan ^{2} \theta}{\sec ^{2} \theta}
$$

$$
=\cos ^{2} \theta-\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \times \frac{\cos ^{2} \theta}{1}
$$

$$
=\cos ^{2} \theta-\sin ^{2} \theta
$$

$$
=\text { RHS }
$$

\therefore LHS $=$ RHS $Q E D!$

25 (cont.) i)

$$
\begin{align*}
& S A=2 x h+2 y h+x y \\
& V=x y h \\
& V=32 \\
& \therefore 32=x y h \\
& h=\frac{32}{x y} \\
& S A=2 x\left(\frac{32}{x y}\right)+2 y\left(\frac{32}{x y}\right)+x y \\
& S A=\frac{64}{y}+\frac{64}{x}+x y \\
& S A=x y+64\left(\frac{1}{x}+\frac{1}{y}\right) \text { QED } \\
& =x y+64\left(x^{-1}+\frac{1}{y}\right) \tag{3}
\end{align*}
$$

1) $S A^{\prime}=y-64 x^{-2} \quad$ (keeping y constant)

$$
\begin{aligned}
& =y-\frac{64}{x^{2}}=0 \text { for stat. pts. } \\
& \therefore x^{2}=\frac{64}{x^{2}}=y \\
& \therefore x=\frac{8}{\sqrt{y}} \quad(\text { since } x>0)
\end{aligned}
$$

Test for a minimum.

$$
S A^{\prime \prime}=\frac{128}{x^{3}}
$$

$$
\text { OR } x=\frac{8}{y^{1 / 2}} \quad A^{\prime}=0+\frac{1}{0}
$$

when $x=\frac{8}{\sqrt{y}}, S A^{\prime \prime}>0 \therefore$ minima Surface Area. $x>\frac{5}{y^{1 / 2}} A^{+}>0$
$\therefore x=\frac{8}{y^{1 / 2} \text { ques }}$
$y_{\text {man }}$

$$
\begin{aligned}
S A & =\frac{8}{\sqrt{y}} \cdot y \pm 64\left(\frac{\sqrt{y}}{8}+\frac{1}{y}\right) \\
& =8 \sqrt{y}+8 \sqrt{y}+\frac{64}{y}
\end{aligned}
$$

$S A=\left(16 \sqrt{y}+\frac{64}{y}\right) m^{2}$ is the minima Surface Ara.

