JAMES RUSE AGRICULTURAL HIGH SCHOOL YEAR 11 MATHEMATICS (2 UNIT) PRELIMINARY EXAMINATION 2005

QUESTION 1	Marks
(a) Solve for $k: (4^2)^{3k} = 1$	1
(b) Simplify $\log_4 128$	2
(c) Factorise and simplify: $\frac{x^3 - 27}{x^2 - 9}$	2
(d) Solve for x: $\frac{3x-5}{2} - \frac{9x-1}{5} < -6$	2
(e) Simplify $\frac{\log_7 8}{\log_7 2}$	2
(f) Rationalize the denominator: $\frac{4\sqrt{2}-3}{5+\sqrt{2}}$	2
(g) Simplify $\sqrt{(x+1)^2}$	1
(h) Solve for x: $ 5x-2 = 6x - 12$	2
(i) Simplify: $\tan(90^\circ + \theta)$	1
QUESTION 2 (START A NEW PAGE)	Marks
(a) Differentiate with respect to <i>x</i> :	
(i) $9x - x^2\sqrt{x}$	2
(ii) $(x^2-1)^{30}$	2
(iii) $\frac{4x-9}{x^3}$	2
(iv) $e^{2x}(e^{4x}-1)$	2
$(\mathbf{v}) \qquad x(x+2)^6$	2
(vi) $\sin^2 x$	1

(b) Show that
$$\frac{d}{dx} \left(\frac{10}{\sqrt{x+3} - \sqrt{x-2}} \right) = \frac{1}{\sqrt{x+3}} + \frac{1}{\sqrt{x-2}}$$
 2

(c) Show that f(x) is a monotonic decreasing function if $f(x) = \frac{1}{(x+2)^4}$ for x > -2.

OUESTION 3 (START A NEW PAGE)

(a)	Find the equation of the normal to the curve $y = 4\ln(x^2 - 4)$ at the point where $x = 3$.	3

,

- Find an expression without logarithms if: $2\log_2(xy) 3\log_2(x+y) = 4$. (b) 2
- (c) If α and β are the roots of $4x^2 - 5x + 7 = 0$, find the value of $\alpha^2 + \beta^2$.
- (d) Shade the region defined by: $(x+3)^2 + y^2 \le 9$.
- (e) ABCD is a square with CX = CY. Prove that $\angle AXC = \angle AYC$.

Find the coordinates of the inflexion point on the curve $P(x) = x^3 - 6x^2 + 11x - 6$. 3 (f) Fully justify your answer.

QUESTION 4 (START A NEW PAGE)

- Show that quadrilateral *ABCD* is a parallelogram if its vertices are the points: (a) A(-14,18), B(-8,27), C(8,12) and D(2,3).
- Find the value of x, correct to the nearest minute in the domain $-90^\circ \le x \le 90^\circ$, if 2 (b) $2\sin x + 3\cos x = 0.$
- The area A of an irregular shape is given by: $A = 150 32y + 2y^2$ where $y = 5 + 4x x^2$ (c) and x is the distance measured from a fixed point O.

(i) Show that when
$$x = 0.5$$
, $\frac{dA}{dx} = -15$.

(ii) Find the value of
$$\frac{dA}{dx}$$
 when $x = 1.5$ and $x = 2.5$.

- (iii) Find the values of x for the relative minimum and relative maximum values of the 4 area A.
- (iv) Graph the area function A versus x in the domain $0 \le x \le 4$.

2

2

2

Marks

2

1

4

Marks

3

35)
$$P(k) = k^{-1} be^{-1} tille-6$$

 $P_{k} = 3k^{-1} che^{-1} tille-6$
 $P_{k} = 3k^{-1} che^{-1} tille-6$
 $P_{k} = 3k^{-1} che^{-1} tille-6$
 $P_{k} = 2k^{-1} tille-6$
 $P_{k} = 2$