JAMES RUSE AGRICULTURAL HIGH SCHOOL
 YEAR 11 MATHEMATICS (2 UNIT)
 PRELIMINARY EXAMINATION 2006

QUESTION 1

Marks
(a) Solve for $x:|5-2 x| \geq 5$.
(b) Simplify $\frac{\log _{2} 16}{\log _{2} 8}$.
(c) Find the equation of the tangent to $y=\cos x$ at the point $\left(\frac{\pi}{2}, 0\right)$.
(d) Given that $x=\frac{\sqrt{5}-1}{2}$, find the value of $x+\frac{1}{x}$ in simplest form.
(e) Solve for $x: \sqrt{3} \sin x+\cos x=0$, for $0^{\circ} \leq x \leq 360^{\circ}$.
(f) Simplify: $\tan \left(180^{\circ}-A\right) \div \sin \left(180^{\circ}+A\right) \times \sin \left(90^{\circ}-A\right)$.

QUESTION 2 (START A NEW PAGE)

(a) Differentiate with respect to x :
(i) $x e^{\sin x} \quad 2$
(ii) $\frac{1}{(5-3 x)^{6}} \quad 2$
(iii) $\begin{array}{ll}\tan (x+\sqrt{x}) & 2\end{array}$
(iv) $\frac{x}{\ln x}$
(b) Solve for $x:(0.125)^{x}=\sqrt{0.5}$.
(c) The gradient of the curve $y=a x^{2}+b x$ at the point $(2,4)$ is -8 . Calculate the values of a and b.
(d) Find the value of k if $3 x-4 y=2$ is perpendicular to $5 x+k y=7$.
(a) The equation of a parabola is $4 y=12-4 x-x^{2}$.
(i) Find the coordinates of the focus and the equation of the directrix of the parabola.
(ii) Sketch the parabola showing the focus and the directrix.
(iii) For what values of x is $12-4 x-x^{2}<0$
(b) For what values of a will the quadratic expression $a x^{2}+5 x+a$ be positive definite?
(c) If the roots of the quadratic equation $2 x^{2}-5 x+12=0$ are $x=\alpha$ and $x=\beta$, find the value of
(i) $\alpha+\beta$.
(ii) $(\alpha-\beta)^{2}$.
(d) Solve for $x: \log _{3} x-\log _{3}(x-4)=2$.

QUESTION 4 (START A NEW PAGE)

(a) Find the coordinates of the inflexion point on the curve $y=x^{2}-\frac{2}{x}$, justifying your answer.
(b) The quadrilateral $P Q R S$ is a parallelogram with $S R \neq R Q$. The bisectors of its angles intersect at A, B, C and D as shown.

Copy or trace the diagram onto your answer page and prove that quadrilateral $A B C D$ is a rectangle.

Question 4 (continued)
(c) The diagram shows the curve $y=\sqrt{9-x^{2}}$ for $x \geq 0 . P$ is the point $\left(t, \sqrt{9-t^{2}}\right)$ on the curve and M is the foot of the perpendicular drawn from P to the x-axis.

(i) Calculate the area bounded by the curve $y=\sqrt{9-x^{2}}$ and the positive co-ordinate axes.
(ii) Write down an expression in terms of t for the area, A, of $\triangle O P M$.
(iii) Find the co-ordinates of P which gives $\triangle O P M$ the maximum area.
(iv) Find the maximum area of $\triangle O P M$.
(v) Find the ratio of the maximum area of $\triangle O P M$ to the area bounded by the curve and the positive co-ordinate axes calculated in (i).

END OF PAPER

