JAMES RUSE AGRICULTURAL HIGH SCHOOL YEAR 11 MATHEMATICS (2 UNIT) PRELIMINARY EXAMINATION 2006

QUESTION 1		Marks
(a)	Solve for <i>x</i> : $ 5 - 2x \ge 5$.	3
(b)	Simplify $\frac{\log_2 16}{\log_2 8}$.	2
(c)	Find the equation of the tangent to $y = \cos x$ at the point $\left(\frac{\pi}{2}, 0\right)$.	3
(d)	Given that $x = \frac{\sqrt{5} - 1}{2}$, find the value of $x + \frac{1}{x}$ in simplest form.	3
(e)	Solve for <i>x</i> : $\sqrt{3} \sin x + \cos x = 0$, for $0^{\circ} \le x \le 360^{\circ}$.	2
(f)	Simplify: $\tan(180^\circ - A) \div \sin(180^\circ + A) \times \sin(90^\circ - A)$.	2
QUESTION 2 (START A NEW PAGE)		Marks
(a)	Differentiate with respect to x :	2
	(i) $xe^{\sin x}$	
	(ii) $\frac{1}{(5-3x)^6}$	2
	(iii) $\tan\left(x+\sqrt{x}\right)$	2
	(iv) $\frac{x}{\ln x}$	2
(b)	Solve for <i>x</i> : $(0.125)^x = \sqrt{0.5}$.	2
(c)	The gradient of the curve $y = ax^2 + bx$ at the point (2,4) is -8. Calculate the values of a and b.	3
		_

(d) Find the value of k if 3x - 4y = 2 is perpendicular to 5x + ky = 7. 2

QUESTION 3 (START A NEW PAGE)

- (a) The equation of a parabola is $4y = 12 4x x^2$.
 - (i) Find the coordinates of the focus and the equation of the directrix of the parabola.
 - (ii) Sketch the parabola showing the focus and the directrix. 2
 - (iii) For what values of x is $12 4x x^2 < 0$
- (b) For what values of *a* will the quadratic expression $ax^2 + 5x + a$ be positive definite?
- (c) If the roots of the quadratic equation $2x^2 5x + 12 = 0$ are $x = \alpha$ and $x = \beta$, find the value of
 - (i) $\alpha + \beta$. 1

(ii)
$$(\alpha - \beta)^2$$
.

(d) Solve for x: $\log_3 x - \log_3 (x-4) = 2$.

QUESTION 4 (START A NEW PAGE)

- (a) Find the coordinates of the inflexion point on the curve $y = x^2 \frac{2}{r}$, justifying your answer.
- (b) The quadrilateral *PQRS* is a parallelogram with $SR \neq RQ$. The bisectors of its angles intersect at *A*, *B*, *C* and *D* as shown.

3

1

3

Marks

3

3

Question 4 (continued)

- - (i) Calculate the area bounded by the curve $y = \sqrt{9 x^2}$ and the positive co-ordinate axes.
 - (ii)Write down an expression in terms of t for the area, A, of $\triangle OPM$.1(iii)Find the co-ordinates of P which gives $\triangle OPM$ the maximum area.4(iv)Find the maximum area of $\triangle OPM$.1
 - (v) Find the ratio of the maximum area of $\triangle OPM$ to the area bounded by the curve and the positive co-ordinate axes calculated in (i).

END OF PAPER

1

1