\qquad

YEAR 11 MATHEMATICS

September 2011

PRELIMINARY EXAMINATION

Time allowed: 2 hours plus 5 minutes reading time

INSTRUCTIONS

- This examination paper contains two sections with a total value of 65 marks.

Section I: Objective Response Questions (5 questions of 1 mark each) Answer on the Objective-Response Answer Sheet provided.

Section II: Extended Response Questions (4 questions of 15 marks each) Start each question on a new page.

- A table of standard integrals is provided.
- Board-approved calculators may be used.
- Geometric equipment and mathematical curve-drawing templates are allowed.
- Marks may not be awarded for untidy or careless work.
- More marks will be awarded for questions involving higher-order thinking.
- You may tear off the Objective-Response Answer Sheet.

1. The equation of the line through the point $(9,7)$ and parallel to the x-axis is
(A) $x=9$
(B) $y=7$
(C) $y=9$
(D) $\quad x=7$
2. The function $f(x)=x^{2}-2 x$ is
(A) even
(B) odd
(C) neither
(D) positive definite
3. The gradient of a line perpendicular to $3 x-4 y+7=0$ is
(A) $\frac{3}{4}$
(B) $\frac{-3}{4}$
(C) $\frac{4}{3}$
(D) $\frac{-4}{3}$
4. $81^{-\frac{3}{4}}$ is not equal to
(A) $\frac{1}{81^{\frac{3}{4}}}$
(B) $\frac{1}{27}$
(C) $\quad \frac{1}{27^{4}}$
(D) $\quad 0 . \dot{0} 3 \dot{7}$
5. Express the equation of the parabola $x^{2}=2(2 y-1)$ in the form $(x-h)^{2}=4 a(y-k)$ and hence write down the focal length.

Question 1 (Start a new page.)
15 Marks
(a) Evaluate, correct to three significant figures
[2]

$$
\frac{13^{5}}{9^{6}+11^{4}}+1
$$

(b) Factorise $16 x^{2}-25$.
(c) Solve $2 x+3 \leq 8$.
(d) Find all the value(s) of x in the interval $0^{\circ} \leq x \leq 360^{\circ}$ for which $\tan x=\frac{1}{\sqrt{3}}$.
(e) For what value(s) of k does $3 x^{2}+2 x+k=0$ have real roots?
(f) Simplify $\frac{5}{x^{2}+x}+\frac{2}{x^{2}-1}$.
(g) Simplify $\tan \theta \cos \theta$.

Question 2 (Start a new page.)
(a) Differentiate
(i) $x^{2}-3 x$
(ii) $\frac{1}{x}$
(b) (i) Sketch the graph of $y=|2 x-6|$, showing all relevant features.
(ii) On the same set of axes, sketch the line $y=-1$.
(iii) Hence state number of solutions to the equation $|2 x-6|=-1$.
(c) Given $x^{2}-(k+5) x+5 k=0$, find the value(s) of k such that one root is two more than the other.
(d) A parabola has focus $(2,1)$ and directrix $y=5$.
(i) Find the vertex.
(ii) Sketch the parabola and write down its equation.

Question 3 (Start a new page.)
(a) If $f(x)=1-x^{2}$,
(i) find $f(x+a)$
(ii) find, in simplest form, $\frac{f(x+a)-f(x)}{a}$.
(b) (i) Show that $1+\frac{2}{x}=\frac{x+2}{x}$.
(ii) Find the domain and range of the curve $y=\frac{x+2}{x}$.
(c) Given that the sides of a right-angled triangle are $x, x+1$ and $x+2$, find the value of x.
(d) In the diagram below, the point $\mathrm{B}(8,4)$ lies on line L_{1} and the point $\mathrm{C}(0,10)$ lies on the line L_{2}. The lines L_{1} and L_{2} meet at the point $\mathrm{A}(5,0)$. The point M lies on the y-axis.

Question 3-Continued

(i) Show that the gradient of AB is $\frac{4}{3}$.
(ii) Find the angle that the line AB makes with the positive direction of the x-axis.
(iii) Show that the equation of the line AB is $3 y=4 x-20$.
(iv) The line AB cuts the y-axis at M . Find the co-ordinates of the point M .
(v) Find the area of \triangle CMA to one decimal place.

Question 4 (Start a new page.)
(a) Simplify $\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \sec ^{2} \theta$.
(b) (i) Find the perpendicular distance between the line $3 x+4 y-3=0$ and the circle $x^{2}+y^{2}=16$.
(ii) Is the line a tangent or secant to the circle, or neither? Give reasons for your answer.
(c) Write down a possible equation of a parabola that is negative definite.
(d) Given the points $\mathrm{A}(2,4)$ and $\mathrm{B}(-4,2)$, find the equation of the locus of the point $\mathrm{P}(x, y)$ and describe the locus geometrically if $\angle A P B$ is a right-angle.

Question 4 -Continued

(e) In the diagram below, $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{OC}=3 \mathrm{~cm}$ and $\angle D A B=30^{\circ}$. O is the centre of the circle.
(i) Show that $\angle O C B=56^{\circ}$ (to the nearest degree)
(ii) Find the area of triangle OCB.

Objective Response Answers

Student Number: \qquad
Tear off this sheet and hand it in separately.
Questions 1-4 : Circle the correct answer
Question 5: Write the correct answer in the box provided

$\mathbf{1}$	A	B	C	D
$\mathbf{2}$	A	B	C	D
$\mathbf{3}$	A	B	C	D
$\mathbf{4}$	A	B	C	D
$\mathbf{5}$				

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x \quad=\frac{1}{a} \sec a x, a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

SECTION I
Year 11 2U Kambala Preliminary Examination solutions Sept 2011

Question i
Year 112 U Kambala Preliminary Examination solutions Sept 2011

QUESTION 1 convinutu

Year 112 U Kampala Preliminary Examination solutions Sept 2011

Qa
(a) (i)

$$
\begin{aligned}
y & =x^{2}-3 x \\
y^{\prime} & =2 x-3 \\
y & =\frac{1}{x}=x^{-1} \\
y^{\prime} & =-1 x^{-2} \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

(ii)
(b)

$$
\begin{aligned}
& x^{2}-(k+5) x+5 k \\
& \text { Let first root }=\alpha \\
& \text { second root }=\alpha \\
& \alpha+\alpha+2=-\frac{b}{a} \\
& 2 \alpha+\lambda=k+5 \\
& 2 \alpha=k+3 \\
& 2 \alpha-3=k
\end{aligned}
$$

- $\alpha(\alpha+2)=\frac{c}{a}=5 k(2$

$$
\alpha^{2}+\alpha^{\alpha}=5 K
$$

$\alpha^{2}+2 \alpha=5(2 \alpha-3)$ subst.

$$
\alpha^{2}+2 \alpha=10 \alpha-15
$$

$$
\alpha^{2}-8 x+15=0
$$

$$
\begin{gathered}
(\alpha-5)(\alpha-3)=0 \\
\alpha=3 \text { or } 5
\end{gathered}
$$

$$
\alpha=3 \text { or } 5
$$

$$
\begin{aligned}
K & =2 \alpha-3 & \text { or } & 2 \alpha-3 \\
& =2 \times 5-3 & & 2 \times 3-3 \\
& =10-3 & & \\
& =7 & & \\
& & &
\end{aligned}
$$

Year 112 U Kambala Preliminary Examination solutions Sept 2011

Qu
Year 11 2U Kambala Preliminary Examination solutions Sept 2011

Year 112 U Kambala Preliminary Examination solutions Sept 2011

Year 112 K Kambala Preliminary Examination solutions Sept 2011

| Qu |
| ---: | :--- |
| ad | (e)

