Student Number: _____

2013 PRELIMINARY EXAMINATION

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 6–9.

Total Marks – 65

5 marks

- Attempt Questions 1–5
- Allow about 10 minutes for this section

Section II Pages 4–7

60 marks

- Attempt Questions 6–9
- Allow about 1 hours 50 minutes for this section

Section I

5 marks Attempt Questions 1–5 Allow about 10 minutes for this section

Use the multiple-choice answer sheet for Questions 1–5.

- 1 What is the value of $\sqrt{9.87^2 1.23^2}$, correct to 3 significant figures?
 - (A) 2.94 (B) 8.64 (C) 9.79 (D) 9.95

Which two inequalities best describe the shaded region shown in the graph above?

(A) $y \ge x$ and $y \ge -x$ (B) $y \ge x$ and $y \le -x$ (C) $y \le x$ and $y \ge -x$ (D) $y \le x$ and $y \le -x$

3 The diagram below shows the graph of a quadratic function.

Which of the following statements is true?

(A) a > 0 and $\Delta > 0$ (B) a > 0 and $\Delta < 0$ (C) a < 0 and $\Delta > 0$ (D) a < 0 and $\Delta < 0$

4 What is the angle of inclination of the line 3x - 5y - 7 = 0 with the positive direction of the *x*-axis?

(A)	30°58'	(B)	59°2'	(C)	120°58'	(D)	149°2'
-----	--------	-----	-------	-----	---------	-----	--------

5	Which of these expressions is	equal to	$\tan (180 - \theta)^{\circ} \times \tan (90 - \theta)^{\circ}?$
---	-------------------------------	----------	--

(A) 1 (B) -1 (C) $\tan^2\theta$ (D) $-\tan^2\theta$

Section II

60 marks Attempt Questions 6–9 Allow about 1 hours 50 minutes for this section

Start each question on a new page. Extra writing pages are available.

All necessary working should be shown in every question.

Que	estion 6	(15 marks)	Start a new page	
(a)	Solve the following:			
	(i) $\frac{x}{3} - \frac{2x-1}{4} = 1$			2
	(ii) $ 2x-9 = 3x-1$	l		3
(b)	Express $\frac{10 - \sqrt{3}}{10 + \sqrt{3}}$ as a	fraction with a rational denomina	ator in simplest form.	2
(c)	Simplify: $\frac{x^2 - 81}{x^3 + 27} \times \frac{x}{x}$	$\frac{+3}{-9}$		2
(d)	If $\sin A = \frac{4}{5}$ and $\cos A$	A < 0, find the exact value of tan A	1.	2
(e)	α and β are the roots of	of the equation $2x^2 - 3x + 5 = 0$. H	Find the value of:	
	(i) $\alpha + \beta$			1
	(ii) $\alpha\beta$			1
	(iii) $\alpha^2 + \beta^2$			2

Question 7

(15 marks)

Start a new page

(a) In the diagram below, the line p has equation x + 2y - 4 = 0, and cuts the x-axis and y-axis at A and B respectively.

(i) Copy the diagram onto your writing paper.

	(ii)	Find the coordinates of A and B.	2
	(iii)	Find the gradient of AB.	1
	(iv)	Show that the equation of the line q, perpendicular to the line AB and passing through the point A is $2x - y - 8 = 0$.	3
	(v)	Find the area of the triangle enclosed by line q and the coordinate axes.	2
(b)	Solv	olve the following:	
	(i)	$3x^2 - 5x - 28 < 0$	2
	(ii)	$x^6 - 28x^3 + 27 = 0$	3

(c) State the domain and range of the function $y = \sqrt{2x-6}$. 2

Question 8

(15 marks)

Start a new page

3

(a) For what value(s) of k will the equation $x^2 + (k+3)x + 4k = 0$ have:

(i)	roots which are equal?	2
(ii)	roots which are reciprocals of each other?	2

- (b) Find the values of *A*, *B* and *C* if $x^2 + x + 1 \equiv A(x-2)^2 + B(x-2) + C$. 3
- (c) A rope 20 metres long is tied to the top of two posts of equal height fixed into level ground. A weight is attached to the rope so that it is 8 metres from one end of the rope. The angle between the two parts of the rope is 99°, as shown in the diagram below.

Find the distance between the two posts. Give your answer to correct to 1 decimal place.

- (d) A function f(x) is defined as: $f(x) = \begin{cases} 5x - 4 & \text{for } x \ge 0\\ px + q & \text{for } x < 0 \end{cases}$
 - (i) Evaluate f(2). 1 (ii) Find an expression for f(3) + f(-2). Give your answer in simplest form. 2 2
 - (iii) Find the values of p and q so that f(x) is an even function.

Question 9		(15 marks)	Start a new page	
(a)	Show that $\frac{x+2}{x+1} = 1 + $	$\frac{1}{x+1}$.		2
(b)	Solve the equation 2	$\sin 2x - 1 = 0$ in the domain $0^\circ \le x \le 360^\circ$.		3

(c) (i) Factorise $x^2 + 3x + 2$. 1

(ii) Prove that
$$\frac{\sin^2 x + 3\sin x + 2}{\cos^2 x} = \frac{2 + \sin x}{1 - \sin x}$$
. 3

(d) (i) Fully factorise the expression
$$2x^2 + 4x - 6$$
.1(ii) Find the minimum value of the function $f(x) = 2x^2 + 4x - 6$.1

(iii) Hence, or otherwise, draw the graph of the function
$$y = |2x^2 + 4x - 6|$$
. Use at least 2 half a page for your graph. Ensure that you label the key features of the graph.

(iv) On the same diagram, draw the graph of the function
$$y = x + 2$$
. 1

(v) Hence state the **number** of solutions for the equation
$$x + 2 = |2x^2 + 4x - 6|$$
. 1

End of paper

2 UNIT MATHEMATICS 2013 PRELIMINARY EXAMINATION

SECTION I

1
$$\sqrt{9.87^2 - 1.23^2} = \sqrt{9.87^2 - 1.23^2}$$

= $\sqrt{95.904}$
= 9.793058766
≈ 9.79
 \therefore Answer: C
2 Choosing (1,0) as a test point:
For $y = x$, we have 0 < 1, so the region is defined as $y \le x$.
For $y = -x$, we have 0 > -1, so the region is defined as $y \ge -x$.
 \therefore Answer: C

3 Parabola is concave up, so a > 0. Parabola has two zeros, so $\Delta > 0$. \therefore Answer: **A**

Gradient =
$$\frac{-a}{b}$$

= $\frac{-3}{-5}$
= $\frac{3}{5}$
tan θ = m
= $\frac{3}{5}$
 θ = 30.96375653
= 30°58'
∴ Answer: A

5 $\tan (180 - \theta) \times \tan (90 - \theta) = -\tan \theta \times \cot \theta$ = $-\frac{\sin \theta}{\cos \theta} \times \frac{\cos \theta}{\sin \theta}$ = -1

: Answer: **B**

3. A

4. **A**

SECTION II

QUESTION 6

(a) (i)

$$\frac{x}{3} - \frac{2x - 1}{4} = 1$$

$$\frac{4x}{12} - \frac{3(2x - 1)}{12} = 1$$

$$\frac{4x - 3(2x - 1)}{12} = 1$$

$$\frac{4x - 6x + 3}{12} = 1$$

$$\frac{-2x + 3}{12} = 1$$

$$-2x + 3 = 12$$

$$-2x = 9$$

$$x = -\frac{9}{2}$$

(ii) When $2x - 9 \ge 0$ (or $x \ge 4\frac{1}{2}$):

$$2x-9 = 3x-1$$
$$2x = 3x+8$$
$$-x = 8$$
$$x = -8$$

But since $x \ge 4\frac{1}{2}$, there is no solution in this case.

When 2x - 9 < 0 (or $x < 4\frac{1}{2}$):

$$-(2x-9) = 3x-1-2x+9 = 3x-1-2x = 3x-10-5x = -10x = 2$$

This is a valid solution. \therefore The only solution is x = 2.

(b)
$$\frac{10-\sqrt{3}}{10+\sqrt{3}} = \frac{10-\sqrt{3}}{10+\sqrt{3}} \times \frac{10-\sqrt{3}}{10-\sqrt{3}}$$

 $= \frac{(10-\sqrt{3})^2}{(10+\sqrt{3})(10-\sqrt{3})}$
 $= \frac{100-20\sqrt{3}+3}{(10)^2-(\sqrt{3})^2}$
 $= \frac{103-20\sqrt{3}}{100-3}$
 $= \frac{103-20\sqrt{3}}{97}$

(c)
$$\frac{x^2 - 81}{x^3 + 27} \times \frac{x - 9}{x + 3} = \frac{(x + 9)(x - 9)}{(x + 3)(x^2 - 3x + 9)} \times \frac{x + 3}{x - 9}$$

$$= \frac{(x + 9)(x - 9)}{(x + 3)(x^2 - 3x + 9)} \times \frac{x + 3}{x - 9}$$
$$= \frac{x + 9}{x^2 - 3x + 9}$$

(d)
$$A$$

 3
 C 4 B

Since sin A > 0 and cos A < 0, A lies in the 2nd quadrant. $\therefore \tan A < 0$. $\therefore \tan A = -\frac{4}{3}$

(e)
$$2x^{2} - 3x + 5 = 0$$

$$\therefore a = 2, b = -3, c = 5$$

(i)

$$\alpha + \beta = \frac{-b}{a}$$

$$= \frac{-(-3)}{2}$$

$$= \frac{3}{2}$$

(ii)

$$\alpha\beta = \frac{c}{a}$$

$$= \frac{5}{2}$$

(iii)

$$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$$
$$= (\frac{3}{2})^{2} - 2(\frac{5}{2})$$
$$= \frac{9}{4} - 5$$
$$= -\frac{11}{4}$$

QUESTION 7

$$y - y_1 = m(x - y_1)$$

$$y - 0 = 2(x - 4)$$

$$y = 2x - 8$$

$$2x - y - 8 = 0$$

or

Equation of line *p* is x + 2y - 4 = 0. \therefore Equation of line *q* is 2x - y + k = 0. Since line *q* passes through (4,0):

$$2(4)-(0)+k=0$$

$$8-0+k=0$$

$$8+k=0$$

$$k=-8$$

$$\therefore \text{ Equation of line } q \text{ is } 2x-y-8=0.$$

(v) When $x = 0$:

$$2(0)-y-8=0$$

$$-y-8=0$$

$$y=-8$$

$$\therefore \text{ Line } q \text{ cuts the } y\text{-axis at } (0,-8).$$

Area $= \frac{1}{2} bh$

$$= \frac{1}{2} \times 4 \times 8$$

$$= 16 \text{ square units}$$

(b) (i) Consider
$$3x^2 - 5x - 28 = 0$$

 $(3x + 7)(x - 4) = 0$
 $\therefore x = -2\frac{1}{2}$ or 4

 $\therefore \text{ The solution to the inequality } 3x^2 - 5x - 28 < 0 \text{ is } -2\frac{1}{3} < x < 4.$

(ii)
$$x^6 - 28x^3 + 27 = 0$$

 $(x^3)^2 - 28x^3 + 27 = 0$
Let $t = x^3$
 $t^2 - 28t + 27 = 0$
 $(t - 1)(t - 27) = 0$
 $\therefore t = 1 \text{ or } 27$
 $\therefore x^3 = 1 \text{ or } 27$
 $\therefore x = 1 \text{ or } 3$

(c) For the domain: $2x-6 \ge 0$

$$2x-6 \ge 0$$
$$2x \ge 6$$
$$x \ge 3$$
For the range:
$$y \ge 0$$

QUESTION 8

```
(a) (i) For equal roots, \Delta = 0. Now:

\Delta = b^2 - 4ac

= (k+3)^2 - 4(1)(4k)

= k^2 + 6k + 9 - 16k

= k^2 - 10k + 9

Therefore we need:

k^2 - 10k + 9 = 0

(k-1)(k-9) = 0

k = 1 \text{ or } 9
```

(ii) For roots as reciprocals, their product of the roots is 1. Now:

Product of roots =
$$\frac{c}{a}$$

= $\frac{4k}{1}$
= $4k$

Therefore we need:

$$4k = 1$$

$$k = \frac{1}{4}$$
(b) $x^{2} + x + 1 \equiv A(x - 2)^{2} + B(x - 2) + C$

$$\equiv A(x^{2} - 4x + 4) + B(x - 2) + C$$

$$\equiv Ax^{2} - 4Ax + 4A + Bx - 2B + C$$

$$\equiv Ax^{2} - 4Ax + Bx + 4A - 2B + C$$

$$\equiv Ax^{2} + (-4A + B)x + (4A - 2B + C)$$
Therefore:
 $A = 1$
and:
 $-4A + B = 1$
 $-4(1) + B = 1$
 $-4 + B = 1$
 $B = 5$
and:
 $4A - 2B + C = 1$
 $4(1) - 2(5) + C = 1$
 $4 - 10 + C = 1$
 $-6 + C = 1$
 $C = 7$
 $\therefore A = 1, B = 5, C = 7$

(c) Since the rope is 20 m long, the two portions of rope must be 8 m and 12 m.

Let d be the distance between the posts. Using the cosine rule:

$$d^{2} = 8^{2} + 12^{2} - 2 \times 8 \times 12 \times \cos 99^{\circ}$$

= 238.0354173
$$d = 15.42839646$$

= 15.4

 \therefore The posts are 15.4 m apart.

(d) (i)
$$f(2) = 5(2) - 4$$

= 6

(ii)
$$f(3) + f(-2) = [5(3) - 4] + [p(-2) + q]$$

= $15 - 4 - 2p + q$
= $11 - 2p + q$

(iii) An even function is symmetrical about the y axis. The line y = px + q has a gradient which is the same magnitude but opposite sign compared to y = 5x - 4, and touches the y axis at the same point.
∴ p = -5, q = -4

QUESTION 9

(a)

$$RHS = 1 + \frac{1}{x+1}$$
$$= \frac{x+1}{x+1} + \frac{1}{x+1}$$
$$= \frac{x+1+1}{x+1}$$
$$= \frac{x+2}{x+1}$$
$$= LHS$$
or
$$LHS = \frac{x+2}{x+1}$$
$$= \frac{x+1+1}{x+1}$$
$$= \frac{x+1+1}{x+1}$$
$$= 1 + \frac{1}{x+1}$$
$$= RHS$$

(b)

$$2\sin 2x - 1 = 0$$

 $2\sin 2x = 1$
 $\sin 2x = \frac{1}{2}$
 $2x = 30^{\circ}, 150^{\circ}, 390^{\circ} \text{ or } 510^{\circ}$
 $x = 15^{\circ}, 75^{\circ}, 195^{\circ} \text{ or } 255^{\circ}$

(c) (i)
$$x^{2} + 3x + 2 = (x + 1)(x + 2)$$

(ii) LHS $= \frac{\sin^{2} x + 3\sin x + 2}{\cos^{2} x}$
 $= \frac{(\sin x + 1)(\sin x + 2)}{1 - \sin^{2} x}$
 $= \frac{(\sin x + 1)(\sin x + 2)}{(1 + \sin x)(1 - \sin x)}$
 $= \frac{2 + \sin x}{1 - \sin x}$
 $= RHS$

(d) (i)
$$2x^2 + 4x - 6 = 2(x^2 + 2x - 3)$$

= $2(x + 3)(x - 1)$

(ii) Zeros of function are -3 and 1. \therefore Minimum value exists when x = -1. Minimum value = 2(-1)2 + 4(-1) - 6 = 2 - 4 - 6= -8

or

(iv) The equation $x + 2 = |2x^2 + 4x - 6|$ has 2 solutions.