Student Number: $\qquad$

2013
preliminary
eXAMINATION

## Mathematics

## General Instructions

- Reading time - 5 minutes
- Working time - 2 hours
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- Show all necessary working in Questions 6-9.


## Total Marks - 65

Section I Pages 2-3

## 5 marks

- Attempt Questions 1-5
- Allow about 10 minutes for this section

Section II Pages 4-7
60 marks

- Attempt Questions 6-9
- Allow about 1 hours 50 minutes for this section


## Section I

## 5 marks

Attempt Questions 1-5
Allow about 10 minutes for this section
Use the multiple-choice answer sheet for Questions 1-5.

1 What is the value of $\sqrt{9.87^{2}-1.23^{2}}$, correct to 3 significant figures?
(A) 2.94
(B) 8.64
(C) 9.79
(D) 9.95

2


Which two inequalities best describe the shaded region shown in the graph above?
(A) $y \geq x$ and $y \geq-x$
(B) $y \geq x$ and $y \leq-x$
(C) $y \leq x$ and $y \geq-x$
(D) $y \leq x$ and $y \leq-x$

3 The diagram below shows the graph of a quadratic function.


Which of the following statements is true?
(A) $a>0$ and $\Delta>0$
(B) $a>0$ and $\Delta<0$
(C) $a<0$ and $\Delta>0$
(D) $a<0$ and $\Delta<0$

4 What is the angle of inclination of the line $3 x-5 y-7=0$ with the positive direction of the $x$ axis?
(A) $30^{\circ} 58^{\prime}$
(B) $59^{\circ} 2^{\prime}$
(C) $120^{\circ} 58^{\prime}$
(D) $149^{\circ} 2^{\prime}$

5 Which of these expressions is equal to $\tan (180-\theta)^{\circ} \times \tan (90-\theta)^{\circ}$ ?
(A) 1
(B) -1
(C) $\tan ^{2} \theta$
(D) $-\tan ^{2} \theta$

## Section II

## 60 marks

Attempt Questions 6-9
Allow about 1 hours 50 minutes for this section
Start each question on a new page. Extra writing pages are available.
All necessary working should be shown in every question.

Question 6
(15 marks)
Start a new page
(a) Solve the following:
(i) $\frac{x}{3}-\frac{2 x-1}{4}=1$
(ii) $|2 x-9|=3 x-1$
(b) Express $\frac{10-\sqrt{3}}{10+\sqrt{3}}$ as a fraction with a rational denominator in simplest form.
(c) Simplify: $\frac{x^{2}-81}{x^{3}+27} \times \frac{x+3}{x-9}$
(d) If $\sin A=\frac{4}{5}$ and $\cos A<0$, find the exact value of $\tan A$.
(e) $\alpha$ and $\beta$ are the roots of the equation $2 x^{2}-3 x+5=0$. Find the value of:
(i) $\alpha+\beta$ 1
(ii) $\alpha \beta$ 1
(iii) $\alpha^{2}+\beta^{2}$
(a) In the diagram below, the line $p$ has equation $x+2 y-4=0$, and cuts the $x$-axis and $y$-axis at $A$ and $B$ respectively.

(i) Copy the diagram onto your writing paper.
(ii) Find the coordinates of $A$ and $B$.
(iii) Find the gradient of $A B$.
(iv) Show that the equation of the line $q$, perpendicular to the line $A B$ and passing through the point $A$ is $2 x-y-8=0$.
(v) Find the area of the triangle enclosed by line $q$ and the coordinate axes.
(b) Solve the following:
(i) $3 x^{2}-5 x-28<0$
(ii) $x^{6}-28 x^{3}+27=0$
(c) State the domain and range of the function $y=\sqrt{2 x-6}$.
(a) For what value(s) of $k$ will the equation $x^{2}+(k+3) x+4 k=0$ have:
(i) roots which are equal?
(ii) roots which are reciprocals of each other?
(b) Find the values of $A, B$ and $C$ if $x^{2}+x+1 \equiv A(x-2)^{2}+B(x-2)+C$.
(c) A rope 20 metres long is tied to the top of two posts of equal height fixed into level ground. A weight is attached to the rope so that it is 8 metres from one end of the rope. The angle between the two parts of the rope is $99^{\circ}$, as shown in the diagram below.


Find the distance between the two posts. Give your answer to correct to 1 decimal place.
(d) A function $f(x)$ is defined as:

$$
f(x)= \begin{cases}5 x-4 & \text { for } x \geq 0 \\ p x+q & \text { for } x<0\end{cases}
$$

(i) Evaluate $f(2)$.
(ii) Find an expression for $f(3)+f(-2)$. Give your answer in simplest form.
(iii) Find the values of $p$ and $q$ so that $f(x)$ is an even function.
(a) Show that $\frac{x+2}{x+1}=1+\frac{1}{x+1}$.
(b) Solve the equation $2 \sin 2 x-1=0$ in the domain $0^{\circ} \leq x \leq 360^{\circ}$.
(c) (i) Factorise $x^{2}+3 x+2$.
(ii) Prove that $\frac{\sin ^{2} x+3 \sin x+2}{\cos ^{2} x}=\frac{2+\sin x}{1-\sin x}$.
(d) (i) Fully factorise the expression $2 x^{2}+4 x-6$.
(ii) Find the minimum value of the function $f(x)=2 x^{2}+4 x-6$.
(iii) Hence, or otherwise, draw the graph of the function $y=\left|2 x^{2}+4 x-6\right|$. Use at least half a page for your graph. Ensure that you label the key features of the graph.
(iv) On the same diagram, draw the graph of the function $y=x+2$.
(v) Hence state the number of solutions for the equation $x+2=\left|2 x^{2}+4 x-6\right|$.

## 2 UNIT MATHEMATICS <br> 2013 PRELIMINARY EXAMINATION

## SECTION I

$1 \sqrt{9.87^{2}-1.23^{2}}=\sqrt{9.87^{2}-1.23^{2}}$
$=\sqrt{95.904}$
$=9.793058766$
$\approx 9.79$
$\therefore$ Answer: C

2 Choosing $(1,0)$ as a test point:
2. $\mathbf{C}$

For $y=x$, we have $0<1$, so the region is defined as $y \leq x$.
For $y=-x$, we have $0>-1$, so the region is defined as $y \geq-x$.
$\therefore$ Answer: C

3 Parabola is concave up, so $a>0$.
3. $\mathbf{A}$

Parabola has two zeros, so $\Delta>0$.
$\therefore$ Answer: A

4
4. $\mathbf{A}$

$$
\begin{aligned}
\text { Gradient } & =\frac{-a}{b} \\
& =\frac{-3}{-5} \\
& =\frac{3}{5}
\end{aligned} \begin{aligned}
\tan \theta & =m \\
& =\frac{3}{5} \\
\theta & =30.96375653 \\
& =30^{\circ} 58^{\prime}
\end{aligned}
$$

$\therefore$ Answer: A
$5 \tan (180-\theta) \times \tan (90-\theta)=-\tan \theta \times \cot \theta$

$$
\begin{aligned}
& =-\frac{\sin \theta}{\cos \theta} \times \frac{\cos \theta}{\sin \theta} \\
& =-1
\end{aligned}
$$

$\therefore$ Answer: B

## SECTION II

## QUESTION 6

(a) (i)

$$
\begin{aligned}
\frac{x}{3}-\frac{2 x-1}{4} & =1 \\
\frac{4 x}{12}-\frac{3(2 x-1)}{12} & =1 \\
\frac{4 x-3(2 x-1)}{12} & =1 \\
\frac{4 x-6 x+3}{12} & =1 \\
\frac{-2 x+3}{12} & =1 \\
-2 x+3 & =12 \\
-2 x & =9 \\
x & =-\frac{9}{2}
\end{aligned}
$$

(ii) When $2 x-9 \geq 0$ (or $x \geq 4 \frac{1}{2}$ ):

$$
\begin{aligned}
2 x-9 & =3 x-1 \\
2 x & =3 x+8 \\
-x & =8 \\
x & =-8
\end{aligned}
$$

But since $x \geq 4 \frac{1}{2}$, there is no solution in this case.
When $2 x-9<0$ (or $x<4 \frac{1}{2}$ ):

$$
\begin{aligned}
-(2 x-9) & =3 x-1 \\
-2 x+9 & =3 x-1 \\
-2 x & =3 x-10 \\
-5 x & =-10 \\
x & =2
\end{aligned}
$$

This is a valid solution.
$\therefore$ The only solution is $x=2$.
(b) $\frac{10-\sqrt{3}}{10+\sqrt{3}}=\frac{10-\sqrt{3}}{10+\sqrt{3}} \times \frac{10-\sqrt{3}}{10-\sqrt{3}}$

$$
\begin{aligned}
& =\frac{(10-\sqrt{3})^{2}}{(10+\sqrt{3})(10-\sqrt{3})} \\
& =\frac{100-20 \sqrt{3}+3}{(10)^{2}-(\sqrt{3})^{2}} \\
& =\frac{103-20 \sqrt{3}}{100-3} \\
& =\frac{103-20 \sqrt{3}}{97}
\end{aligned}
$$

(c) $\frac{x^{2}-81}{x^{3}+27} \times \frac{x-9}{x+3}=\frac{(x+9)(x-9)}{(x+3)\left(x^{2}-3 x+9\right)} \times \frac{x+3}{x-9}$

$$
\begin{aligned}
& =\frac{(x+9)(x-9)}{(x+3)\left(x^{2}-3 x+9\right)} \times \frac{x+3}{x-9} \\
& =\frac{x+9}{x^{2}-3 x+9}
\end{aligned}
$$

(d)


Since $\sin A>0$ and $\cos A<0, A$ lies in the 2 nd quadrant.
$\therefore \tan A<0$.
$\therefore \tan A=-\frac{4}{3}$
(e) $2 x^{2}-3 x+5=0$
$\therefore a=2, b=-3, c=5$
(i)

$$
\begin{aligned}
\alpha+\beta & =\frac{-b}{a} \\
& =\frac{-(-3)}{2} \\
& =\frac{3}{2}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\alpha \beta & =\frac{c}{a} \\
& =\frac{5}{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =\left(\frac{3}{2}\right)^{2}-2\left(\frac{5}{2}\right) \\
& =\frac{9}{4}-5 \\
& =-\frac{11}{4}
\end{aligned}
$$

## QUESTION 7

(a) (i)

(ii) When $y=0$ :

$$
\begin{aligned}
x+2(0)-4 & =0 \\
x-4 & =0 \\
x & =4
\end{aligned}
$$

$\therefore A \equiv(4,0)$
When $x=0$ :

$$
\begin{array}{r}
(0)+2 y-4=0 \\
2 y-4=0 \\
2 y=4 \\
y=2
\end{array}
$$

$\therefore B \equiv(0,2)$
(iii) Gradient of $A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{2-0}{0-4} \\
& =-\frac{1}{2}
\end{aligned}
$$

or
Gradient of $A B=\frac{-a}{b}$

$$
\begin{aligned}
& =\frac{-1}{2} \\
& =-\frac{1}{2}
\end{aligned}
$$

(iv) Since line $q$ is perpendicular to line $p$ the gradient of line $q$ is 2 .

Equation of $q$ :

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-0 & =2(x-4) \\
y & =2 x-8 \\
2 x-y-8 & =0
\end{aligned}
$$

or
Equation of line $p$ is $x+2 y-4=0$.
$\therefore$ Equation of line $q$ is $2 x-y+k=0$.
Since line $q$ passes through $(4,0)$ :

$$
\begin{aligned}
2(4)-(0)+k & =0 \\
8-0+k & =0 \\
8+k & =0 \\
k & =-8
\end{aligned}
$$

$\therefore$ Equation of line $q$ is $2 x-y-8=0$.
(v) When $x=0$ :

$$
\begin{aligned}
& 2(0)-y-8=0 \\
& -y-8=0 \\
& y=-8
\end{aligned}
$$

$\therefore$ Line $q$ cuts the $y$-axis at $(0,-8)$.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} b h \\
& =\frac{1}{2} \times 4 \times 8 \\
& =16 \text { square units }
\end{aligned}
$$

(b) (i) Consider $3 x^{2}-5 x-28=0$
$(3 x+7)(x-4)=0$
$\therefore x=-2 \frac{1}{3}$ or 4
$\therefore$ The solution to the inequality $3 x^{2}-5 x-28<0$ is $-2 \frac{1}{3}<x<4$.
(ii) $x^{6}-28 x^{3}+27=0$
$\left(x^{3}\right)^{2}-28 x^{3}+27=0$
Let $t=x^{3}$
$t^{2}-28 t+27=0$
$(t-1)(t-27)=0$
$\therefore t=1$ or 27
$\therefore x^{3}=1$ or 27
$\therefore x=1$ or 3
(c) For the domain:

$$
\begin{aligned}
2 x-6 & \geq 0 \\
2 x & \geq 6 \\
x & \geq 3
\end{aligned}
$$

For the range:

$$
y \geq 0
$$

## QUESTION 8

(a) (i) For equal roots, $\Delta=0$. Now:

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =(k+3)^{2}-4(1)(4 k) \\
& =k^{2}+6 k+9-16 k \\
& =k^{2}-10 k+9
\end{aligned}
$$

Therefore we need:

$$
\begin{aligned}
k^{2}-10 k+9 & =0 \\
(k-1)(k-9) & =0 \\
k & =1 \text { or } 9
\end{aligned}
$$

(ii) For roots as reciprocals, their product of the roots is 1 . Now:

$$
\begin{aligned}
\text { Product of roots } & =\frac{c}{a} \\
& =\frac{4 k}{1} \\
& =4 k
\end{aligned}
$$

Therefore we need:

$$
\begin{aligned}
4 k & =1 \\
k & =\frac{1}{4}
\end{aligned}
$$

(b) $x^{2}+x+1 \equiv A(x-2)^{2}+B(x-2)+C$

$$
\begin{aligned}
& \equiv A\left(x^{2}-4 x+4\right)+B(x-2)+C \\
& \equiv A x^{2}-4 A x+4 A+B x-2 B+C \\
& \equiv A x^{2}-4 A x+B x+4 A-2 B+C \\
& \equiv A x^{2}+(-4 A+B) x+(4 A-2 B+C)
\end{aligned}
$$

Therefore:

$$
A=1
$$

and:

$$
\begin{aligned}
-4 A+B & =1 \\
-4(1)+B & =1 \\
-4+B & =1 \\
B & =5
\end{aligned}
$$

and:

$$
\begin{array}{r}
4 A-2 B+C=1 \\
4(1)-2(5)+C=1 \\
4-10+C=1 \\
-6+C=1 \\
C=7
\end{array}
$$

$\therefore A=1, B=5, C=7$
(c) Since the rope is 20 m long, the two portions of rope must be 8 m and 12 m .


Let $d$ be the distance between the posts.
Using the cosine rule:

$$
\begin{aligned}
d^{2} & =8^{2}+12^{2}-2 \times 8 \times 12 \times \cos 99^{\circ} \\
& =238.0354173 \\
d & =15.42839646 \\
& =15.4
\end{aligned}
$$

$\therefore$ The posts are 15.4 m apart.
(d) (i) $f(2)=5(2)-4$

$$
=6
$$

(ii) $f(3)+f(-2)=[5(3)-4]+[p(-2)+q]$

$$
\begin{aligned}
& =15-4-2 p+q \\
& =11-2 p+q
\end{aligned}
$$

(iii) An even function is symmetrical about the $y$ axis.

The line $y=p x+q$ has a gradient which is the same magnitude but opposite sign compared to $y=5 x-4$, and touches the $y$ axis at the same point.
$\therefore p=-5, q=-4$

## QUESTION 9

(a)

$$
\begin{aligned}
& \text { RHS }=1+\frac{1}{x+1} \\
&=\frac{x+1}{x+1}+\frac{1}{x+1} \\
&=\frac{x+1+1}{x+1} \\
&=\frac{x+2}{x+1} \\
&=\text { LHS } \\
& \text { or } \\
& \text { LHS }=\frac{x+2}{x+1} \\
&=\frac{x+1+1}{x+1} \\
&=\frac{x+1}{x+1}+\frac{1}{x+1} \\
&=1+\frac{1}{x+1} \\
&=\text { RHS }
\end{aligned}
$$

(b)

$$
\begin{aligned}
2 \sin 2 x-1 & =0 \\
2 \sin 2 x & =1 \\
\sin 2 x & =\frac{1}{2} \\
2 x & =30^{\circ}, 150^{\circ}, 390^{\circ} \text { or } 510^{\circ} \\
x & =15^{\circ}, 75^{\circ}, 195^{\circ} \text { or } 255^{\circ}
\end{aligned}
$$

(c) (i) $x^{2}+3 x+2=(x+1)(x+2)$
(ii) LHS $=\frac{\sin ^{2} x+3 \sin x+2}{\cos ^{2} x}$

$$
\begin{aligned}
& =\frac{(\sin x+1)(\sin x+2)}{1-\sin ^{2} x} \\
& =\frac{(\sin x+1)(\sin x+2)}{(1+\sin x)(1-\sin x)} \\
& =\frac{2+\sin x}{1-\sin x} \\
& =\text { RHS }
\end{aligned}
$$

(d) (i) $2 x^{2}+4 x-6=2\left(x^{2}+2 x-3\right)$

$$
=2(x+3)(x-1)
$$

(ii) Zeros of function are -3 and 1 .
$\therefore$ Minimum value exists when $x=-1$.
Minimum value $=2(-1) 2+4(-1)-6$

$$
\begin{aligned}
& =2-4-6 \\
& =-8
\end{aligned}
$$

or
For minimum value, $x=\frac{-b}{2 a}$

$$
=\frac{-4}{2(2)}
$$

$$
=-1
$$

Minimum value $=2(-1) 2+4(-1)-6$

$$
\begin{aligned}
& =2-4-6 \\
& =-8
\end{aligned}
$$

(iii), (iv)

(iv) The equation $x+2=\left|2 x^{2}+4 x-6\right|$ has 2 solutions.

