KAMBALA

## Student Number:

$\qquad$

## Task 4 <br> September 2014

## Preliminary HSC Mathematics

## General Instructions

- Reading time - 5 minutes
- Working time - 2 hours and 30 minutes
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- Show all necessary working in Questions 9-13

Total marks - 83

## Section I

8 marks

- Attempt Questions 1-8
- Allow about 15 minutes for this section


## Section II

75 marks

- Attempt Questions 9-13
- Allow about 2 hours and 15 minutes for this section


## Section I

8 Marks
Attempt Questions 1 - 8
Allow about 15 minutes for this section
Use the answer sheet for Questions 1 - 8.

1. What is $\frac{2}{3-\sqrt{2}}$ as a fraction with a rational denominator?
(A) $\frac{6-2 \sqrt{2}}{7}$
(B) $\frac{6+2 \sqrt{2}}{7}$
(C) $6-2 \sqrt{2}$
(D) $6+2 \sqrt{2}$
2. What is the value of $f(-1)$ if $f(x)=x^{2}-4 x$ ?
(A) $f(-1)=-3$
(B) $\quad f(-1)=-5$
(C) $\quad f(-1)=3$
(D) $f(-1)=5$
3. Select the axis of symmetry of the parabola $y=5 x^{2}-4 x-3$.
(A) $x=\frac{4}{5}$
(B) $x=\frac{2}{5}$
(C) $x=-\frac{3}{5}$
(D) $x=-\frac{4}{5}$
4. Which of the following is true for the equation $3 x^{2}-5 x-2=0$ ?
(A) no real roots
(B) one real root
(C) two rational distinct roots
(D) two irrational distinct roots.
5. Find the value of $b$ if $\sin 2 b=\cos \left(b+30^{\circ}\right)$
(A) $20^{\circ}$
(B) $30^{\circ}$
(C) $40^{\circ}$
(D) $50^{\circ}$
6. Which of the following is NOT a correct expression involving $\theta$ in $\triangle A B C$ ?


Not to Scale
(A) $31.3^{2}=27.6^{2}+23.5^{2}-2 \times 27.6 \times 23.5 \cos \theta$
(B) $\cos \theta=\frac{23.5^{2}+27.6^{2}-31.3^{2}}{2 \times 23.5 \times 27.6}$
(C) $\frac{31.3}{\sin \theta}=\frac{27.6}{\sin 58^{\circ} 26^{\prime}}$
(D) $\frac{\sin \theta}{31.3}=\frac{\sin 58^{\circ} 26^{\prime}}{23.5}$
7. Which pair of inequalities describes the shaded region?


Not to scale
(A) $y \geq 4-3 x$
$y \geq x+2$
(B) $\begin{aligned} & y \geq 4-3 x \\ & y \leq x+2\end{aligned}$
(C) $\begin{aligned} & y \leq 4-3 x \\ & y \geq x+2\end{aligned}$
(D) $\begin{aligned} & y \leq 4-3 x \\ & y \leq x+2\end{aligned}$
8. If $\operatorname{cosec} \theta=-\frac{5}{3}$ and $\cos \theta>0$, find $\cot \theta$.
(A) $\cot \theta=\frac{3}{4}$
(B) $\cot \theta=\frac{4}{3}$
(C) $\cot \theta=-\frac{3}{4}$
(D) $\cot \theta=-\frac{4}{3}$

## Section II

## 75 Marks

## Attempt Questions 9-13

Allow about $\mathbf{2}$ hours $\mathbf{1 5}$ minutes for this section
Answer each question on the writing paper provided. Start each question on a new page.
In Questions 9-13, your responses should include relevant mathematical reasoning and/or calculations.

## Question 9 (15 marks)

(a) Evaluate $\sqrt{\frac{2.3^{2}+3.7^{2}}{7.5}}$ correct to 2 significant figures.
(b) Factorise $x^{3}-125$.
(c) Solve $|2 x-3|=7$ for $x$.
(d) Consider the function $f(x)=x^{2}+2 x-3$.
(i) Find the $x$ and $y$ intercepts.
(ii) Find the minimum value of the function.
(iii) Sketch the function.
(iv) For what values of $x$ is the curve decreasing?
(e) Sketch the locus of the point that moves so that it is always 2 units from the point $P(4,2)$.
(f) If $f(x)=x^{2}+3 x-10$ find:
(i) $f^{\prime}(x)$.
(ii) the value of $x$ for which $f^{\prime}(x)=0$.

## Question 10 ( 15 marks) $\quad$ Start a new page.

(a) Find the exact value of $\tan 300^{\circ}$.
(b) In solving a quadratic equation, a student wrote down $x=\frac{4 \pm \sqrt{16+96}}{6}$.

What was the original quadratic equation?
(c) (i) Solve the inequality $(x+10)(x+2) \geq 0$ for $x$.
(ii) Hence state the domain of $\sqrt{x^{2}+12 x+20}$.
(d) In the diagram, $A B C D$ is a quadrilateral. The equation of the line $A D$ is $2 x-y-3=0$.

(i) The line $C D$ is parallel to the $x$-axis. Find the coordinates of $D$.
(ii) Show that $A B C D$ is a trapezium by showing that $B C$ is parallel to $A D$.
(iii) Find the exact lengths of $B C$ and $A D$.
(iv) Show that the perpendicular distance from $B$ to $A D$ is $\frac{6}{\sqrt{5}}$ units.
(v) Hence find the area of the trapezium $A B C D$.

Note: $A=\frac{1}{2}(a+b) h$

Question 11 ( 15 marks) $\quad$ Start a new page.
(a) Simplify $\frac{m^{2}-4}{m n} \times \frac{2 m}{2 m-4}$.
(b) Explain why $x^{2}+6 x+11$ is positive definite.
(c) A circle with centre $C(2,-3)$ has one end of a diameter at $A(5,-7)$. Find the coordinates of the other end of the diameter.


Not to scale
(d) Let $\alpha$ and $\beta$ be the roots of the equation $3 x^{2}+5 x-1=0$. Find:
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $(\alpha+1)(\beta+1)$
(e) Differentiate the following with respect to $x$ :
(i) $x^{-3}$
(ii) $(x-3)(2 x+1)$
(iii) $\frac{5 x^{6}-7 x^{2}}{x}$

## Question 12 ( 15 marks) $\quad$ Start a new page.

(a) A parabola has focus $S(2,-1)$ and the equation of the directrix is $x=-4$.
(i) Mark this information on a diagram and find the coordinates of the vertex.
(ii) Write down the equation of the parabola.
(b) Solve the equation $\left(x^{2}-2\right)^{2}-4\left(x^{2}-2\right)-21=0$ for $x$.
(c) A ship sails from Melbourne, $M$, for 150 kilometres on a bearing of $034^{\circ}$ to point $T$. It then sails on a bearing of $144^{\circ}$ for 275 kilometres to point $S$ as shown in the diagram below.


Copy the above diagram neatly onto your page.
(i) Show that $\angle M T S=70^{\circ}$.
(ii) How far, to the nearest kilometre, is the ship at point $S$, from Melbourne, $M$ ?
(iii) What is the bearing of the ship, $S$, from Melbourne, $M$, to the nearest degree?

## Question 12 continued

(d) A function is given by $f(x)=x^{2}-1$.
(i) Find $f(2)$ and $f(2+h)$.
(ii) Show that $\frac{f(2+h)-f(2)}{h}=4+h$.
(iii) Hence, or otherwise, find $f^{\prime}(2)$.

## Question 13 (15 marks) Start a new page.

(a) If $2 x^{2}-3 x-4 \equiv A(x+2)^{2}+B(x+2)+C$ for all values of $x$, find the values of $A, B$ and $C$.
(b) The curve below represents the graph of function $y=f(x)$.

(i) Is the function odd, even or neither?
(ii) At what point(s) is $f(x)=0$ ?
(iii) Where is the gradient of the function equal to zero?
(iv) Where is the gradient of the function positive?

## Question 13 continued

(c) The right-angled triangle $A B C$ has hypotenuse $A B=13$. The point $D$ is on $A C$ such that $D C=4, \angle D B C=30^{\circ}$ and $\angle A B D=x$.

(i) Find the length of $B D$.
(ii) Using the sine rule, or otherwise, find the exact value of $\sin x$.
(d) (i) If the line $y=x+m$ cuts the circle $x^{2}+y^{2}=4$, show that the $x$-coordinates of the points of intersection can be found by solving $2 x^{2}+2 m x+m^{2}-4=0$.
(ii) For what value(s) of $m$ will the line $y=x+m$ be a tangent to the circle?

## End of Section II

Kambala Preliminary HSC Mathematics
Assessment Task 4
September 2014
SOLUTIONS

1. $\frac{2}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}}$

$$
\begin{equation*}
=\frac{6+2 \sqrt{2}}{7} \tag{B}
\end{equation*}
$$

2. $f(x)=x^{2}-4 x$
$f(-1)=(-1)^{2}-4(-1)$
$=1+4$

$$
-5
$$

3. 

$$
\begin{align*}
& y=5 x^{2}-4 x-3 \\
& x=-\frac{b}{2 a} \\
& x=\frac{4}{2(15)} \\
& x=\frac{2}{5} \quad \text { B } \tag{B}
\end{align*}
$$

4. $3 x^{2}-5 x-2=0$

$$
\begin{aligned}
\Delta & =(-5)^{2}-4(3)(-2) \\
& =25+24 \\
& =49
\end{aligned}
$$

$\therefore \Delta>0 \Rightarrow$ two distinct roots
$\Delta$ is a perfect square
$\Rightarrow$ rational roots (c)
5. $\sin 2 b=\cos (b+30)$

$$
2 b+b+30=90^{\circ}
$$

$$
\begin{align*}
& 3 b+30=90 \\
& 3 b=60 \\
& b=20^{\circ} \quad A \tag{A}
\end{align*}
$$

6. $D \quad$ (using cosine Rule, angle btw

$$
\text { 7. } y \geqslant 4-3 x
$$

test $(0,0)$

$$
0 \geqslant 4
$$

false
$\therefore$ region above $y=4-3 x$

$$
\therefore y \geqslant 4-3 x
$$

$$
y \geqslant x+2
$$

test $(2,5)$

$$
5 \geqslant 2+2
$$

true

$$
\begin{equation*}
\therefore y \geqslant 4-3 x, y \geqslant x+2 \tag{A}
\end{equation*}
$$

8. $\operatorname{cosec} \theta=-\frac{5}{3}, \cos \theta>0$

Quadrant 4

$$
\cot \theta=-\frac{4}{3}
$$

Question 9
a)

$$
\begin{aligned}
& \quad \sqrt{\frac{2 \cdot 3^{2}+3.7^{2}}{7.5}} \\
& =\sqrt{\frac{5 \cdot 29+13.69}{7.5}} \\
& =\sqrt{\frac{18 \cdot 98}{7.5}} \\
& =\sqrt{2.5306} \\
& =1.5908 \\
& =1.6 \text { (to 2 sig figs) }
\end{aligned}
$$

b)

$$
\begin{aligned}
& x^{3}-125 \\
& =(x-5)\left(x^{2}+5 x+25\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { c) }|2 x-3|=7 \\
2 x-3=7 & \text { or } 3-2 x=7 \\
2 x=10 & -2 x=4 \\
x=5 & x=-2 \\
\therefore x=-2,5 &
\end{array}
$$

d) $f(x)=x^{2}+2 x-3$
i) when $x=0, y=-3$
when $f(x)=0,(x+3)(x-1)=0$

$$
\therefore \quad x=-3,1
$$

$\therefore$ intercepts at $(0,-3),(-3,0)(1,0)$
ii) vertex at $x=\frac{-b}{2 a}$

$$
\begin{aligned}
\therefore x & =\frac{-2}{2} \\
\therefore x & =-1
\end{aligned}
$$

When $x=-1, f(x)=(-1)^{2}+2(-1)-3$
$\therefore f(x)=-4$
$\therefore$ minimum value is -4
iii)

iv) curve decreasing when $x<-1$
e) Locus is a circle with $C(4,2)$ and radius 2 units

f) $f(x)=x^{2}+3 x-10$
i) $f^{\prime}(x)=2 x+3$
ii) $f^{\prime}(x)=0$ when $2 x+3=0$

$$
\therefore x=-\frac{3}{2}
$$

Question 10
a) $\tan 300^{\circ}$

$$
=-\tan 60^{\circ}
$$

$$
=-\sqrt{3}
$$

b) $x=\frac{4 \pm \sqrt{16+96}}{6}$

$$
\begin{aligned}
& b=-4 \\
& a=3 \\
& -4 a c=96 \\
& \therefore-12 c=96
\end{aligned}
$$

$$
\therefore c=-8
$$

$\therefore$ eqn: $3 x^{2}-4 x-8=0$
c) i) $(x+10)(x+2) \geqslant 0$

$$
\begin{aligned}
\alpha_{A D} & =\sqrt{(5-0)^{2}+(7+3)^{2}} \\
& =\sqrt{25+100} \\
& =\sqrt{125} \\
& =5 \sqrt{5}
\end{aligned}
$$

By inspection, $x \leqslant-10, x \geqslant-2$
ii) $\sqrt{x^{2}+12 x+20}$
iv) $d=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$
need domain $x^{2}+12 x+20 \geqslant 0$

$$
\therefore\{x: x \leqslant-10, x \geqslant-2\}
$$

d) i) $D$ has $y$ coordinate $y=7$

D lies on $A D$
$\therefore$ lies on $2 x-y-3=0$

$$
\begin{gathered}
\therefore 2 x-7-3=0 \\
2 x-10=0 \\
x=5
\end{gathered}
$$

$\therefore D$ is the point $(5,7)$
ii)

$$
\begin{aligned}
m_{B C} & =\frac{7-3}{2-0} \\
& =\frac{4}{2} \\
& =2 \\
m_{A D} & =\frac{7+3}{5-0} \\
& =\frac{10}{5} \\
& =2
\end{aligned}
$$

$$
\therefore m_{B C}=m_{A D}
$$

$\therefore B C \| A D$
b.) $x^{2}+6 x+11$
$\therefore A B C D$ is a trapezium
iii)

$$
\begin{aligned}
d_{B C} & =\sqrt{(7-3)^{2}+(2-0)^{2}} \\
& =\sqrt{20} \\
& =2 \sqrt{5}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=(6)^{2}-4(1)(11) \\
&=36-44 \\
&=-12 \\
& \therefore \Delta<0
\end{aligned}
$$

$\therefore$ no real roots
$\therefore$ doesn't cross $x$-axis
$\therefore$ definite
$a>0$
$\therefore$ positive definite
c) $C(2,-3) \quad A(5,-7)$
$\therefore C$ is the midpoint of $A B$

$$
\begin{array}{rr}
\therefore 2=\frac{5+x_{2}}{2} & -3=\frac{-7+y_{2}}{2} \\
4=5+x_{2} & -6=-7+y_{2} \\
\therefore x_{2}=-1 & \therefore y_{2}=1
\end{array}
$$

$\therefore B$ is the point $(-1,1)$
d) $3 x^{2}+5 x-1=0$
i) $\alpha+\beta=-\frac{5}{3}$
ii) $\alpha \beta=\frac{-1}{3}$
iii)

$$
\begin{aligned}
& (\alpha+1)(\beta+1) \\
= & \alpha \beta+\alpha+\beta+1 \\
= & -\frac{1}{3}+-\frac{5}{3}+1 \\
= & -1
\end{aligned}
$$

e)

$$
\begin{aligned}
& \frac{d}{d x} x^{-3} \\
= & -3 x^{-4} \\
= & \frac{-3}{x^{4}}
\end{aligned}
$$

ii)

$$
\begin{aligned}
& \frac{d}{d x}(x-3)(2 x+1) \\
& =\frac{d}{d x} 2 x^{2}-5 x-3 \\
& =4 x-5
\end{aligned}
$$

iii)

$$
\begin{aligned}
\frac{d}{d x} & \frac{5 x^{6}-7 x^{2}}{x} \\
= & \frac{d}{d x}\left(5 x^{5}-7 x\right) \\
= & 25 x^{4}-7
\end{aligned}
$$

Question 12
a) i) $s(2,-1) \quad d: x=-4$ concave right parabola

$$
-\vee(-1,-1)
$$

ii)

$$
\begin{gathered}
(y+1)^{2}=4(3)(x+1) \\
(y+1)^{2}=12(x+1)
\end{gathered}
$$


b) $\left(x^{2}-2\right)^{2}-4\left(x^{2}-2\right)-21=0$
let $u=x^{2}-2$

$$
\therefore u^{2}-4 u-21=0
$$

$$
(u-7)(u+3)=0
$$

$$
u=7,-3
$$

$$
\therefore x^{2}-2=7 \text { or } x^{2}-2=-3
$$

$$
x^{2}=9 \quad x^{2}=-1
$$

$\therefore x= \pm 3$
$\therefore x= \pm 3$
no real solutions
c)

i) $\angle M T A=34^{\circ}$ (alternate angles in parallel lines)
$\angle S T A+144=180$ (angle sum of straight angle

$$
\begin{aligned}
& \therefore \angle S T A=36 \\
& \therefore \angle M T S=34+36
\end{aligned}
$$

$$
\therefore \angle M T S=70^{\circ} \text { as required }
$$

$$
\begin{aligned}
f(2+h) & =4+4 h+h^{2}-1 \\
& =h^{2}+4 h+3
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \frac{f(2+h)-f(2)}{h} \\
= & \frac{h^{2}+4 h+3-3}{h} \\
= & \frac{h(h+4)}{h}
\end{aligned}
$$

$$
=4+h \text { as required }
$$

iii)

$$
\begin{aligned}
f^{\prime}(x) & =2 x \\
\therefore f^{\prime}(z) & =2(2) \\
& =4
\end{aligned}
$$

ii)

$$
\begin{aligned}
(\text { MS })^{2} & =(150)^{2}+(275)^{2}-2(150)(275) \cos 70^{\circ} \\
& =22500+75625-82500 \cos 70^{\circ} \\
& =98125-28216.66182 \quad \text { a) } \\
& =69908.33817 \quad \text { When } x
\end{aligned}
$$

$$
=22500+75625-82500 \cos 70^{\circ} \text { Question } 13
$$

$$
\text { a) } 2 x^{2}-3 x-4 \equiv A(x+2)^{2}+B(x+2)+C
$$

when $x=0: 2(0)^{2}-3(0)-4=A(0+2)^{2}+B(0+2)+1$
$M S \div 264.4 \mathrm{~km}$

$$
-4=4 A+2 B+C
$$

$\therefore M S^{\circ}=264 \mathrm{~km}($ to nearest km$)$ when $x=-2: 2(-2)^{2}-3(-2)-4=A(-2+2)^{2}+B(-2+2)$ ) $8+6-4=c$
iii) $\frac{\sin \angle T^{\prime} m s}{275}=\frac{\sin 70^{\circ}}{m s}$
$\sin \angle T M S=0.977358785$
$\angle T M S=78^{\circ}$ (to nearest degree)

$$
\begin{aligned}
& \therefore=10 \\
\therefore & 4 A+2 B+10=-4 \\
& 4 A+2 B=-14
\end{aligned}
$$

$$
2 A+B=-7 \Rightarrow B=-7-2 A
$$

Bearing $=\left(034^{\circ}+078^{\circ}\right)$

$$
\therefore \text { Bearing }=112^{\circ}
$$

$$
9 A+3 B=-15
$$

d) $f(x)=x^{2}-1$

$$
\therefore 3 A+B=-5 \Rightarrow B=-5-3 A
$$

i)

$$
\begin{aligned}
f(2)= & (2)^{2}-1 \\
& =3 \\
f(2+h) & =(2+h)^{2}-1
\end{aligned}
$$

when $x=1: 2(1)^{2}-3(1)-4=A(1+2)^{2}+B(1+2)+C$

$$
-5=9 A+3 B+10
$$

$$
\begin{gathered}
\therefore-2 A=-5-3 A \\
A=2 \\
\therefore B=-11 \\
\therefore A=2, B=-11, C=10
\end{gathered}
$$

b) i) The function is not even as it doesn't have line symmetry about the $y$-axis The function is not odd as it doesn't have point symmetry about the origin $\therefore$ The function is neither odd nor even
ii) $f(x)=0$ at $a, c$ and $e$
iii) $f^{\prime}(x)=0$ at $b$ and $\alpha$
iv) $f^{\prime}(x)>0$ for $b<x<d$

Question 13
a) i) $\sin 30^{\circ}=\frac{4}{B D}$
$\frac{1}{2}=\frac{4}{B D}$

$$
\therefore B D=8 \text { units }
$$

ii) $\angle B D C=60^{\circ}$ (angle sum $\triangle B D C$ )
$\therefore \angle A D B+60^{\circ}=180$ (angle sum
straight angle $\angle A D C$ )

$$
\begin{aligned}
& \therefore \angle A D B=120^{\circ} \\
& \frac{\sin x}{A D^{\circ}}=\frac{\sin 120^{\circ}}{13} \\
& \sin x=\frac{A D \cdot \sqrt{3}}{2(13)}
\end{aligned}
$$

$$
\sin x=\frac{\sqrt{3} A D}{26}
$$

$(B C)^{2}+(D C)^{2}=(B D)^{2} \quad$ (by Pythagoras' $T h n$ )

$$
(B C)^{2}+16=64
$$

d) i) $y=x+m \quad x^{2}+y^{2}=4$
intersect when $x^{2}+(x+m)^{2}=4$

$$
\begin{aligned}
& x^{2}+x^{2}+2 m x+m^{2}=4 \\
& \therefore 2 x^{2}+2 m x+m^{2}-4=0
\end{aligned}
$$

as required
ii) line will be a tangent with one point of intersection need $\Delta=0$

$$
\begin{aligned}
\Delta & =(2 m)^{2}-4(2)\left(m^{2}-4\right) \\
& =4 m^{2}-8 m^{2}+32 \\
& =-4 m^{2}+32
\end{aligned}
$$

for $\Delta=0,-4 m^{2}+32=0$

$$
\begin{aligned}
& \therefore 4 m^{2}=32 \\
& m^{2}=8 \\
& m= \pm \sqrt{8} \\
& \therefore m= \pm 2 \sqrt{2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore(B C)^{2}=48 \\
& \therefore B C=\sqrt{48} \\
& (B C)^{2}+(A C)^{2}=(A B)^{2} \quad(\text { Pythag }) \\
& \therefore(\sqrt{48})^{2}+(A C)^{2}=(13)^{2} \\
& 48+(A C)^{2}=169 \\
& (A C)^{2}=121 \\
& \therefore A C=11 \\
& \therefore A D=11-4 \\
& \therefore A D=7 \\
& \therefore \sin x=\frac{\sqrt{3} .7}{26} \\
& \therefore \sin x=\frac{7 \sqrt{3}}{26}
\end{aligned}
$$

