Task 4
 September 2016

Preliminary HSC Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black pen
- Board-approved calculators may be used
- Answer Questions $1-10$ on the multiple choice answer sheet
- Answer Questions 11-14 on the paper provided
- A reference sheet is provided with this paper
- In Questions 11 - 14 show relevant mathematical reasoning and calculations

Total marks - 70
Section I
10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Section I

10 Marks

Attempt Questions 1 - 10
Allow about 15 minutes for this section
Use the answer sheet for Questions 1 - 10.

1 Evaluate $\sqrt{\frac{13.24 \times 3.7}{0.45}}$, giving your answer correct to four significant figures.
(A) 10.43
(B) 10.433
(C) 10.434
(D) 10.4337

2 The exact value of $\sin 60^{\circ} \tan 30^{\circ}$ is:
(A) $\frac{3}{2}$
(B) $\frac{\sqrt{3}}{2}$
(C) $\frac{1}{2 \sqrt{3}}$
(D) $\frac{1}{2}$

3 Which of the following graphs represent a function that is neither odd nor even?

(B)

(C)

(D)

4 Let $f(x)=\sqrt{x-5}$. Which of the following is the domain of $f(x)$?
(A) All real x
(B) $x \geq 5$
(C) $x \leq 5$
(D) $-5 \leq x \leq 5$
$5 \quad$ Which graph shows $y=|x+1|$?
(A)

(B)

(C)
(D)

6 The solutions to the inequality $x^{2}+3 x-4 \leq 0$ are represented by:
(A) $x \leq-4, x \geq 1$
(B) $x \leq-1, x \geq 4$
(C) $-4 \leq x \leq 1$
(D) $-1 \leq x \leq 4$

7 The locus of a point that moves so that its distance from the y-axis is always three times its distance from the x-axis is:
(A) $y= \pm 3 x$
(B) $y= \pm \frac{x}{3}$
(C) $y= \pm 3 x^{2}$
(D) $y= \pm \frac{x^{2}}{3}$

8 If $\operatorname{cosec} \theta=-\frac{5}{3}$ and $\cos \theta>0$, then the value of $\cot \theta$ is:
(A) $-\frac{3}{4}$
(B) $\frac{3}{4}$
(C) $-\frac{4}{3}$
(D) $\frac{4}{3}$

9 In order to find the gradient of $f(x)=x^{2}-3 x+2$ using first principles, which one of the following expressions would, need to be simplified?
(A) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)+2-x^{2}-3 x+2}{h}$
(B) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)+2+x^{2}-3 x+2}{h}$
(C) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)+2-x^{2}+3 x-2}{h}$
(D) $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)+2-x^{2}-3 x-2}{h}$

10 The expression $\frac{x^{2}-5 x+6}{4-x^{2}}$ is equivalent to:
(A) $\frac{6-5 x}{4}$
(B) $\frac{x-3}{2+x}$
(C) $\frac{x-3}{x-2}$
(D) $\frac{3-x}{2+x}$

Section II

60 Marks

Attempt Questions 11-14

Allow about 1 hour 45 minutes for this section

Answer each question on the writing paper provided. Start each question on a new page. In Questions 11-14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

(a) The two shorter sides of a right-angled triangle have sides of lengths $2+\sqrt{3}$ and $2-\sqrt{3}$. Find the exact length of the hypotenuse.
(b) Find the value of x given that $\cos 30^{\circ}=\sin (x+20)^{\circ}$.
(c) Simplify $\frac{2^{x-1} \times 2^{3}}{2^{4-3 x}}$.
(d) Given that $f(x)=x^{2}+1$:
(i) Evaluate $f(-5)$.
(ii) Find the value(s) of x such that $f(x)=5$.
(e) Find the values of k for which $3 x^{2}-4 x+k=0$ has no real roots.
(f) If α and β are the roots of the quadratic equation $2 x^{2}-7 x+12=0$, find the value of:
(i) $\alpha+\beta$.
(ii) $\alpha \beta$.
(iii) $\alpha^{2}+\beta^{2}$.
(g) For what value(s) of x is the graph of $f(x)=1+\frac{1}{x-2}$ discontinuous?

Question 12 (15 marks) Start a new page.

(a) If $2 x^{2}+3 x-5 \equiv A(x+1)^{2}+B(x+1)+C$, find A, B and C.
(b) A parabola has equation $y^{2}=8 x$.
(i) Find the
(I) focal length.
(II) coordinates of the vertex.
(III) coordinates of the focus.
(IV) equation of the directrix.
(ii) Sketch the parabola indicating the above features.
(c) A ship starts from O and sails 80 kilometres on a bearing of 035° to A . It then changes course and sails 55 kilometres on a bearing of 110° to B .

(i) Copy the diagram, marking on it the information supplied.
(ii) Show that $\angle \mathrm{OAB}=105^{\circ}$.
(iii) Calculate the distance of B from O , correct to 1 decimal place.
(d) Solve the equation $x^{6}-7 x^{3}-8=0$ for x.

Question 13 (15 marks) Start a new page.

(a) Points $A(-2,5)$ and $B(4,-3)$ lie on the line l_{l} as shown in the diagram below. C is the point of intersection of lines l_{1} and l_{2} and is the midpoint of the interval $A B$.

Not to scale
(i) Show that the gradient of line l_{l} is $-\frac{4}{3}$.
(ii) Hence, show that the equation of line l_{l} is $4 x+3 y-7=0$.
(iii) Find the size of α, the angle of inclination of line l_{l}, to the nearest degree.
(iv) Find the coordinates of C, the midpoint of $A B$.
(v) The equation of line l_{2} is $2 x-y-1=0$. Find the coordinates of D, the point where line l_{2} crosses the y-axis.
(vi) Find the length of $A D$, leaving your answer in simplest surd form.
(vii) The line through $A D$ has equation $3 x+y+1=0$. Find the shortest distance between the point C and this line.
(viii) Hence, or otherwise, find the area of $\triangle A C D$.

Question 13 (continued)

(b) (i) A point $P(x, y)$ moves so that its distance from the point $A(1,5)$ is equal to its distance from the point $B(4,-1)$.

Show that the locus of P is a straight line with equation $2 x-4 y+3=0$.
(ii) Describe geometrically the locus of P.

Question 14 (15 marks) Start a new page.

(a) A function is defined by the rule:

$$
f(x)= \begin{cases}x^{2}+4 & x \geq 0 \\ \frac{1}{x} & x<0\end{cases}
$$

(i) Find $f\left(k^{2}\right)$
(ii) Sketch the graph of $y=f(x)$ showing all its features.
(b) Consider the equation $x^{2}+(m-3) x+m=0$. Find the values of m for which the equation has two real and different roots.
(c) Solve the equation $2 \sin (\theta-60)^{\circ}=-\sqrt{3}$ for $-180^{\circ} \leq \theta \leq 180^{\circ}$.
(d) The locus of a point $P(x, y)$ is a parabola with equation $x^{2}-8 x+4 y-12=0$. Find the coordinates of the vertex of the parabola.
(e) Triangle $A B C$ is right-angled at C with $A B=2 \mathrm{~cm}$ and $B C=1 \mathrm{~cm} . D$ is a point on $C A$ produced such that $A D=2 \mathrm{~cm}$ as shown in the diagram below.

(i) Show that $\angle A D B=15^{\circ}$.
(ii) Hence show that the exact value of $\tan 15^{\circ}=2-\sqrt{3}$.
\qquad

Mathematics

Task 4 Preliminary HSC Examination
 September 2016

Section I

Multiple-Choice Answer Sheet
Circle your response
1.
A
B
C
D
2.
A
B
C
D
3.
A
B
C
D
4.
A
B
C
D
5.
A
B
C
D
6.
A
B
C
D
7.
A
B
C
D
8.
A
B
C
D
9.
A
B
C
D
10.
A
B
C
D

