

Student Number: \_\_\_\_\_

# Task 4 September 2016

# **Preliminary HSC Mathematics**

## **General Instructions**

- Reading time 5 minutes
- Working time 2 hours
- Write using black pen
- Board-approved calculators may be used
- Answer Questions 1 10 on the multiple choice answer sheet
- Answer Questions 11 14 on the paper provided
- A reference sheet is provided with this paper
- In Questions 11 14 show relevant mathematical reasoning and calculations

# Total marks – 70

#### Section I 10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section

## Section II 60 marks

- Attempt Questions 11 14
- Allow about 1 hour and 45 minutes for this section

## Section I

## 10 Marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the answer sheet for Questions 1 – 10.

- 1 Evaluate  $\sqrt{\frac{13.24 \times 3.7}{0.45}}$ , giving your answer correct to four significant figures. (A) 10.43 (B) 10.433 (C) 10.434 (D) 10.4337
- 2 The exact value of  $\sin 60^{\circ} \tan 30^{\circ}$  is:

(A) 
$$\frac{3}{2}$$
 (B)  $\frac{\sqrt{3}}{2}$  (C)  $\frac{1}{2\sqrt{3}}$  (D)  $\frac{1}{2}$ 

3 Which of the following graphs represent a function that is neither odd nor even?



4 Let  $f(x) = \sqrt{x-5}$ . Which of the following is the domain of f(x)?

(A) All real x (B) 
$$x \ge 5$$
 (C)  $x \le 5$  (D)  $-5 \le x \le 5$ 



6 The solutions to the inequality  $x^2 + 3x - 4 \le 0$  are represented by:

(A)  $x \le -4, x \ge 1$  (B)  $x \le -1, x \ge 4$  (C)  $-4 \le x \le 1$  (D)  $-1 \le x \le 4$ 

7 The locus of a point that moves so that its distance from the *y*-axis is always three times its distance from the *x*-axis is:

(A) 
$$y = \pm 3x$$
 (B)  $y = \pm \frac{x}{3}$  (C)  $y = \pm 3x^2$  (D)  $y = \pm \frac{x^2}{3}$ 

8 If 
$$\csc \theta = -\frac{5}{3}$$
 and  $\cos \theta > 0$ , then the value of  $\cot \theta$  is:  
(A)  $-\frac{3}{4}$  (B)  $\frac{3}{4}$  (C)  $-\frac{4}{3}$  (D)  $\frac{4}{3}$ 

9 In order to find the gradient of  $f(x) = x^2 - 3x + 2$  using first principles, which one of the following expressions would, need to be simplified?

(A) 
$$\lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2 - x^2 - 3x + 2}{h}$$

(B) 
$$\lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2 + x^2 - 3x + 2}{h}$$

(C) 
$$\lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2 - x^2 + 3x - 2}{h}$$

(D) 
$$\lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) + 2 - x^2 - 3x - 2}{h}$$

10 The expression 
$$\frac{x^2 - 5x + 6}{4 - x^2}$$
 is equivalent to:

(A) 
$$\frac{6-5x}{4}$$
 (B)  $\frac{x-3}{2+x}$  (C)  $\frac{x-3}{x-2}$  (D)  $\frac{3-x}{2+x}$ 

## End of Section I

#### Section II

## 60 Marks Attempt Questions 11 - 14 Allow about 1 hour 45 minutes for this section

Answer each question on the writing paper provided. Start each question on a new page. In Questions 11 - 14, your responses should include relevant mathematical reasoning and/or calculations.

### Question 11 (15 marks)

| (a) | The two shorter side and $2 - \sqrt{3}$ . Find t | es of a right-angled triangle have sides of lengths $2 + \sqrt{3}$<br>the exact length of the hypotenuse. | 2   |
|-----|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----|
| (b) | Find the value of x g                            | given that $\cos 30^\circ = \sin(x+20)^\circ$ .                                                           | 1   |
| (c) | Simplify $\frac{2^{x-1} \times 2^3}{2^{4-3x}}.$  |                                                                                                           | 2   |
| (d) | Given that $f(x) = x^2$                          | +1:                                                                                                       |     |
|     | (i) Evaluate $f(-$                               | -5).                                                                                                      | 1   |
|     | (ii) Find the valu                               | he(s) of x such that $f(x) = 5$ .                                                                         | 2   |
| (e) | Find the values of $k$                           | for which $3x^2 - 4x + k = 0$ has no real roots.                                                          | 2   |
| (f) | If $\alpha$ and $\beta$ are the r                | roots of the quadratic equation $2x^2 - 7x + 12 = 0$ , find the value of                                  | of: |
|     | (i) $\alpha + \beta$ .                           |                                                                                                           | 1   |
|     | (ii) $\alpha\beta$ .                             |                                                                                                           | 1   |
|     | (iii) $\alpha^2 + \beta^2$ .                     |                                                                                                           | 2   |
|     |                                                  | 1                                                                                                         |     |

(g) For what value(s) of x is the graph of  $f(x) = 1 + \frac{1}{x-2}$  discontinuous? 1

## Question 12 (15 marks) Start a new page.

(a) If 
$$2x^2 + 3x - 5 \equiv A(x+1)^2 + B(x+1) + C$$
, find A, B and C. 3

- (b) A parabola has equation  $y^2 = 8x$ .
  - (i) Find the

| (I)   | focal length.              | 1 |
|-------|----------------------------|---|
| (II)  | coordinates of the vertex. | 1 |
| (III) | coordinates of the focus.  | 1 |
| (IV)  | equation of the directrix. | 1 |
|       |                            |   |

- (ii) Sketch the parabola indicating the above features.
- (c) A ship starts from O and sails 80 kilometres on a bearing of 035° to A. It then changes course and sails 55 kilometres on a bearing of 110° to B.



| (i)   | Copy the diagram, marking on it the information supplied.       | 1 |
|-------|-----------------------------------------------------------------|---|
| (ii)  | Show that $\angle OAB = 105^{\circ}$ .                          | 1 |
| (iii) | Calculate the distance of B from O, correct to 1 decimal place. | 2 |

# (d) Solve the equation $x^6 - 7x^3 - 8 = 0$ for x.

3

1

## Question 13 (15 marks) Start a new page.

(a) Points A(-2, 5) and B(4, -3) lie on the line  $l_1$  as shown in the diagram below. *C* is the point of intersection of lines  $l_1$  and  $l_2$  and is the midpoint of the interval *AB*.



| (i)    | Show that the gradient of line $l_1$ is $-\frac{4}{3}$ .                                                                                   | 1 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|---|
| (ii)   | Hence, show that the equation of line $l_i$ is $4x + 3y - 7 = 0$ .                                                                         | 2 |
| (iii)  | Find the size of $\alpha$ , the angle of inclination of line $l_1$ , to the nearest degree.                                                | 1 |
| (iv)   | Find the coordinates of $C$ , the midpoint of $AB$ .                                                                                       | 2 |
| (v)    | The equation of line $l_2$ is $2x - y - 1 = 0$ . Find the coordinates of <i>D</i> , the point where line $l_2$ crosses the <i>y</i> -axis. | 1 |
| (vi)   | Find the length of AD, leaving your answer in simplest surd form.                                                                          | 2 |
| (vii)  | The line through <i>AD</i> has equation $3x + y + 1 = 0$ . Find the shortest distance between the point <i>C</i> and this line.            | 2 |
| (viii) | Hence, or otherwise, find the area of $\triangle ACD$ .                                                                                    | 1 |

## Question 13 continues on the next page

## **Question 13 (continued)**

(b) (i) A point P(x,y) moves so that its distance from the point A(1, 5) is equal to its distance from the point B(4, -1).

2

1

Show that the locus of *P* is a straight line with equation 2x - 4y + 3 = 0.

(ii) Describe geometrically the locus of *P*.

#### Question 14 (15 marks) Start a new page.

(a) A function is defined by the rule:

$$f(x) = \begin{cases} x^2 + 4 & x \ge 0\\ \frac{1}{x} & x < 0 \end{cases}$$

- (i) Find  $f(k^2)$
- (ii) Sketch the graph of y = f(x) showing all its features.
- (b) Consider the equation  $x^2 + (m-3)x + m = 0$ . Find the values of *m* for which the equation has two real and different roots.
- (c) Solve the equation  $2\sin(\theta 60)^\circ = -\sqrt{3}$  for  $-180^\circ \le \theta \le 180^\circ$ . 3
- (d) The locus of a point P(x, y) is a parabola with equation  $x^2 8x + 4y 12 = 0$ . Find the coordinates of the vertex of the parabola.
- (e) Triangle ABC is right-angled at C with AB = 2 cm and BC = 1 cm. D is a point on CA produced such that AD = 2 cm as shown in the diagram below.



- (i) Show that  $\angle ADB = 15^{\circ}$ .
- (ii) Hence show that the exact value of  $\tan 15^\circ = 2 \sqrt{3}$ .

# 2

1

2

3

2

2

### End of Section II

Kambala Preliminary HSC Mathematics – Task 4 September 2016

Student Number: \_\_\_\_\_

# **Mathematics**

# Task 4 Preliminary HSC Examination September 2016

## Section I

Multiple-Choice Answer Sheet Circle your response

| 1.  | А | В | C | D |
|-----|---|---|---|---|
| 2.  | А | В | С | D |
| 3.  | А | В | С | D |
| 4.  | А | В | С | D |
| 5.  | А | В | С | D |
| 6.  | А | В | С | D |
| 7.  | А | В | С | D |
| 8.  | А | В | С | D |
| 9.  | А | В | С | D |
| 10. | А | В | С | D |

| Qn | Solutions                                                         | Marks     | Comments & Criteria |
|----|-------------------------------------------------------------------|-----------|---------------------|
| I. | <u>Section 1:</u><br>(A) 10.43                                    | g         |                     |
| 2. | $\frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} = \frac{1}{2}  (D)$ |           |                     |
| 3. | (B)                                                               | Vittegas  |                     |
| 4. | x-5 >0<br>x > 5 (B)                                               | Contracts |                     |
| ۶. | (A)                                                               | Venue     |                     |
| 6. | $(x+4)(x-1) \leq 0$                                               |           |                     |
|    | $-4 \le x \le 1$ (c)                                              |           |                     |
| ₹. | $y = \pm \frac{1}{3}x$ (B)                                        | 1         |                     |
| 8. | $s_{i}\dot{n} = -\frac{3}{5}$                                     |           |                     |
|    | $\frac{4}{5} \frac{4}{3} \cot \theta = -\frac{3}{4} (c)$          |           |                     |

| Qn  | Solutions                                             | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments & Criteria |
|-----|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 9.  | $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | $\lim_{x \to 0} (x+h)^2 - 3(x+h) + 2 - (x^2 - 3x+2)$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | h-70 h                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | $\lim_{h \to 20} (x+h)^2 - 3(x+h) + 2 - x^2 + 3x - 2$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | K K                                                   | and the second se |                     |
|     | (c)                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| (0. | (x-3)(x-2)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | $\overline{(2-\varkappa)(2+\varkappa)}$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | (x-3)(x-2)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | -1(x-2)(z+x)                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | $\frac{(\chi - 3)}{(\chi - 3)}$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | $-1(2+\lambda)$                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | $-1 \times (x-3)$                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     | 3-x                                                   | Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|     | $\overline{a+x}$ (b)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|     |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |

| Qn           | Solutions                                          | Marks     | Comments & Criteria |
|--------------|----------------------------------------------------|-----------|---------------------|
| Q11          | Section I:                                         |           |                     |
| (a)          | $C^{2} = (2+\sqrt{3})^{2} + (2-\sqrt{3})^{2}$      |           |                     |
|              | $C^2 = 4 + 4\sqrt{3} + 3 + 4 - 4\sqrt{3} + 3$      | I for w   | orking              |
|              | $c^2 = 14$                                         |           |                     |
|              | $C = \sqrt{14}$                                    | I for e   | xact area           |
| (6)          | $\cos 30^{\circ} = \sin (90^{\circ} - 30^{\circ})$ |           |                     |
|              | $\cos 30^{\circ} = \sin 60^{\circ}$                |           |                     |
|              | $\sin 60 = \sin (x + 20)$                          |           |                     |
|              | $\chi = 40$                                        | I for a   | nswer               |
| (c)          | $2^{(x-1)} + 3 - (4 - 3x)$                         | I for NO  | rking               |
|              | $= 2^{4x-2}$                                       |           |                     |
|              | $\propto$                                          | Tor an    | swer                |
| (d) i)       | $f(-5) = (-5)^2 + 1$                               |           |                     |
|              | = 25+1                                             |           |                     |
|              | = 26                                               | I for ans | iwer                |
| $\ddot{i_1}$ | $5 = x^2 + 1$                                      |           |                     |
|              | $\chi^2 = 4$                                       | 1 for w   | orking              |
|              | $x = \pm 2$                                        | 1 for an  | swer                |
|              |                                                    | 1         |                     |
|              |                                                    |           |                     |
|              |                                                    |           |                     |
|              |                                                    |           |                     |

| Qn     | Solutions                            | Marks     | Comments & Criteria       |
|--------|--------------------------------------|-----------|---------------------------|
| (e)    | $b^{2}-4ac < 0$                      |           | ·                         |
|        | 16-12k < 0                           | 1 for n   | lorking                   |
|        | -12k < -16<br>$k = \frac{4}{2}$      | 1 for a   | nswer                     |
|        | 3                                    |           |                           |
| (f) i) | $\alpha + \beta = -\frac{b}{\alpha}$ |           |                           |
|        | $=\frac{7}{2}$                       | I for an  | swer                      |
| ii)    | $\kappa\beta = \frac{c}{a}$          |           |                           |
|        | $=\frac{12}{2}$                      |           |                           |
|        | = 6                                  | 1 for a   | nswer                     |
| iii)   | $x^{2} + b^{2} = (x + b)^{2} - 2x/5$ |           |                           |
|        | $=\left(\frac{7}{2}\right)^2 - 2(6)$ | I for nu  | orking                    |
|        | $=\frac{49}{4}-12$                   |           |                           |
|        | = 1/4                                | 1 for an  | swer                      |
| (9)    | $\chi = 2$                           | l for ans | wer (must be an equation) |

.

| Qn         | Solutions                                                                                                                                                                                                            | Marks         | Comments & Criteria                                                     |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|
| Q12<br>(a) | $A (x+1)^{2} + B(x+1) + C$ $A (x^{2} + 2x + 1) + Bx + B + C$ $A x^{2} + 2Ax + A + Bx + B + C$ $A x^{2} + (2A+B)x + (A + B + C)$ $A = 2$ $2A + B = 3$ $4 + B = 3$ $B = -1$ $A + B + C = -5$ $2 - 1 + C = -5$ $C = -6$ | I for the Loi | each A, B & C.<br>fincorrect values,<br>rogress morks may<br>e awarded. |
| (b)i)      | $y^2 = 8x$<br>(i) focal length: $4a = 8$<br>a = 2<br>(ii) vertex: $(0, 0)$<br>(iii) focus: $(2, 0)$<br>(iv) directrix: $x = -2$                                                                                      |               |                                                                         |
| ii)        | -2 o $S(2,0)$                                                                                                                                                                                                        | 1             |                                                                         |

| Qn     | Solutions                                                                                                                              | Marks   | Comments & Criteria |
|--------|----------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------|
| (c) i) | N 80 555 B                                                                                                                             | frr     | all information     |
| n)     | $A \longrightarrow B \qquad \text{LDAB} = 180° - 110° = 70° \\ B \qquad \text{LDAB} = 35° (alternate argues)$                          |         |                     |
|        | : COAB = 70 +35<br>=105°                                                                                                               | 1       |                     |
| iii)   | $\chi^{2} = 80^{2} + 55^{2} - 2 \times 80 \times 55 \times coslo5$<br>$\chi^{2} = 11702 \cdot 6076$<br>$\chi = 108 \cdot 2 \text{ km}$ | 1 for   | vorking<br>answer   |
| (d)    | $(x^3)^2 - 7x^3 - 8 = 0$                                                                                                               |         |                     |
|        | $(x^{3}-8)(x^{3}+1)=0$                                                                                                                 | 1 for   | factorisation       |
|        | $x^{3}=8$ $x^{3}=-1$<br>x=2 $x=-1$                                                                                                     | l for e | each ans wer        |

| Qn      | Solutions                                                                                                         | Marks              | Comments & Criteria      |
|---------|-------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------|
| Q 13 a) | i) $M = \frac{y_2 - y_1}{x_2 - x_1}$<br>= $\frac{-3 - 5}{4 + 2}$<br>= $-\frac{8}{5}$                              | l for<br>gra       | working to show<br>dient |
|         | $\begin{array}{c} -\overline{3} \\ ii)  y+3 = -\frac{4}{3} (x-4) \\ 3y+9 = -4x + 16 \\ 4x+3y - 7 = 0 \end{array}$ | 1 for a            | vorking<br>mewer         |
|         | iii) $m = tan0$<br>$-\frac{4}{3} = tan0$<br>$0 = 53^{\circ}$                                                      | l for a            | inswer                   |
|         | $\Theta = 180 - 53 = 127$<br>iv) $M = \left(\frac{-2+4}{2}, \frac{5-3}{2}\right)$<br>= (1, 1)                     | 1 for u<br>1 for a | vorking<br>newer         |
|         | v) $2x - y - 1 = 0$<br>let $x = 0$<br>-y - 1 = 0<br>y = -1<br>D: $(0 = 1)$                                        |                    | conductes                |

| Qn | Solutions                                                                                            | Marks           | Comments & Criteria          |
|----|------------------------------------------------------------------------------------------------------|-----------------|------------------------------|
|    | vi) $d = \sqrt{(-2-0)^2 + (5+1)^2}$<br>$d = \sqrt{(-2)^2 + 6^2}$<br>$d = \sqrt{4+36}$                | l for a         | vorking                      |
|    | $d = \sqrt{40}$ $d = 2\sqrt{10}$ (i)                                                                 | 1 for 1<br>suri | answer in simplest<br>d from |
|    | $= \frac{ 3+1+1 }{\sqrt{a^2+b^2}}$                                                                   | 1 for           | working                      |
|    | $= \frac{5}{\sqrt{10}}$                                                                              | 1 for           | answer                       |
|    | viii) $A$<br>$2 - 10$ $A = \frac{1}{2}bh$<br>$= \frac{1}{2} \times \frac{2}{10} \times \frac{5}{10}$ |                 |                              |
|    | = 5 units <sup>2</sup>                                                                               | 1 for           | answer                       |
|    |                                                                                                      |                 |                              |

| Qn        | Solutions                                                                                                                         | Marks               | Comments & Criteria                    |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|
| ( )       | i) $PA^2 = PB^2$                                                                                                                  |                     |                                        |
|           | $(x - 1)^{2} + (y - 5)^{2} = (x - 4)^{2} + (y + 1)^{2}$<br>$x^{2} - 2x + 1 + y^{2} - 10y + 25 = x^{2} - 8x + 16 + y^{2} + 2y + 1$ | 1 fer               | working                                |
|           | 6x - 12y + 9 = 0                                                                                                                  |                     |                                        |
|           | 2x - 4y + 3 = 0                                                                                                                   | 1 for c             | answer                                 |
|           | ii) Perpendicular bisector of AB                                                                                                  | 1 for<br>geo        | appropriate<br>metric description      |
| Q14<br>a) | i) $f(k^2) = (k^2)^2 + 4$<br>= $k^4 + 4$                                                                                          | 1 fr                | answer                                 |
|           | ii) 4<br>F                                                                                                                        | 1 Ar<br>th<br>-1 Ar | each part of<br>e arrive<br>any errors |
| ( b)      | $b^{2} - 4ac > 0$<br>$(m-3)^{2} - 4m > 0$<br>$m^{2} - 6m + 9 - 4m > 0$<br>$m^{2} - 10m + 9 > 0$                                   | I for su            | bstitution of $\Delta$                 |
|           | (m-9)(m-1) > 0                                                                                                                    | 1 for               | factorisation                          |
|           | m<1, m>9                                                                                                                          | 1 for a             | answer                                 |

| Qn                 | Solutions                                | Marks | Comments & Criteria |
|--------------------|------------------------------------------|-------|---------------------|
| ( c)               | $2\sin(0-60^{\circ})=-13$                |       |                     |
|                    | $\sin (\theta - 60^{\circ}) = -\sqrt{3}$ |       |                     |
|                    | -180 E O E 180                           |       |                     |
|                    | -240° ≤ 0 - 60 ≤ 120°                    | 1 for | domain              |
|                    | -240' E U E 120                          |       |                     |
|                    | $\sin u = -\frac{\sqrt{3}}{2}$           | 1 for | working with 'u'    |
|                    | u = -60°, -120°                          |       |                     |
|                    | since x= u+ 60                           |       |                     |
|                    | $\Theta = 0^{\circ}, -60^{\circ}$        | 1 for | answers             |
| $\left( d \right)$ | $x^2 - 8x + 4y - 12 = 0$                 |       |                     |
|                    | $x^2 - 8x = -4y + 12$                    |       |                     |
|                    | $(x-4)^2 = -4y+12+16$                    |       |                     |
|                    | $(x-4)^2 = -4y + 28$                     | 1 +01 | working             |
|                    | $(x-4)^{2} = -4(y-7)$                    |       |                     |
|                    | V: (4,7)                                 | 1 fm  | vertex              |
|                    |                                          |       |                     |
|                    |                                          |       |                     |

| Qn     | 5                                                           | Solutions                                       | Marks        | Comments & Criteria                       |
|--------|-------------------------------------------------------------|-------------------------------------------------|--------------|-------------------------------------------|
| (e) i) | $a^2 + b^2 = c^2$                                           | $sin(4 CAB) = \frac{1}{2}$                      | Option -     | <u></u>                                   |
|        | $a^2 + 1 = 4$                                               | :. L CAB = 30°                                  | 1 tog        | et to CD                                  |
|        | $a^2 = 5$<br>$a = \sqrt{3}$                                 | < BAD = 150° (180 - 30')                        | 1 for        | showing 0=15°                             |
|        | CD = 2+13                                                   | A ABD is an isoceles                            | Dotion       | 25                                        |
|        | $\tan \theta = \frac{1}{2 \pm \sqrt{3}}$                    | $\therefore \angle ADB = \frac{1}{2} \times 30$ | 1 fr         | $\angle CAB = 30^{\circ}$                 |
|        | $\theta = 15^{\circ}$                                       | - 13                                            | 1 for<br>isc | recognition of $s$ celes $k = 15^{\circ}$ |
| ii)    | $\tan 15 = \frac{1}{2+\sqrt{3}}$                            |                                                 | 1 for        | tan ratio                                 |
|        | $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$ | = 2-13                                          | 5†           | atement                                   |
|        |                                                             | = 2-13                                          | 1 for        | rationalising.                            |
|        | : tan 15 = 1                                                | 2 - 13                                          |              |                                           |
|        |                                                             |                                                 |              |                                           |
|        |                                                             |                                                 |              |                                           |
|        |                                                             |                                                 |              |                                           |
|        |                                                             |                                                 |              |                                           |
|        |                                                             |                                                 |              |                                           |