Teacher's Name

Student Number

Knox Grammar School 2012 Year 11 Yearly Examination

Mathematics

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen
- Board approved calculators may be used
- Answer in simplest exact form unless otherwise stated
- Show all necessary working in questions 11 16

Total Marks – 100

Section I

10 Marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section.

Section II

90 marks

• Attempt Questions 11 – 16

Examiner: E. Choy

Number of Students in Course: 130 This paper MUST NOT be removed from the examination room

Section I Multiple Choice

10 Marks Attempt Question 1 – 10. Allow approximately 15 minutes for this section.

1.	Evalu	that $\frac{3.23}{0.45+1.2^2}$ correct to 3 s	significa	ant figures.
	(A)	1.71	(B)	8.62
	(C)	8.617	(D)	1.708
2.	If $\frac{1}{2-}$	$\frac{2}{\sqrt{3}} = a + \sqrt{b}$ then the values	of <i>a</i> and	l <i>b</i> are:
	(A)	– 4 and 12	(B)	4 and 12
	(C)	4 and 3	(D)	2 and 3
3.	The se	olutions to the equation $2x^2$ –	7x - 2 =	= 0are:
	(A)	$\frac{-7\pm\sqrt{33}}{4}$	(B)	$\frac{-7\pm\sqrt{65}}{4}$
	(C)	$\frac{7\pm\sqrt{33}}{4}$	(D)	$\frac{7\pm\sqrt{65}}{4}$
4.	The d	omain and range for the funct	ion y=	$\sqrt{7-x}$ is:
	(A)	$x \le 7$; $y \ge 0$	(B)	$0 \le x \le 7 \; ; \; y \ge 0$
	(C)	$x \ge 0$; $y \ge 0$	(D)	All real <i>x</i> , All real <i>y</i>
5.	A fun The p	ction is defined by $f(x) = x^2$ oint on $y = f(x)$ which has	$x^2 - 4x - 4x - 4x$ a gradie	+ 5. ent of 2 is:
	(A)	(3, -1)	(B)	(2, 1)

(C) (3, 2) (D) (2, 3)

6. The derivative of $2x^{\frac{1}{2}}$ is :

(A)
$$-\frac{2}{\sqrt{x}}$$
 (B) $-\frac{1}{\sqrt{x}}$
(C) $\frac{1}{\sqrt{x^3}}$ (D) $\frac{1}{\sqrt{x}}$

7. The calculation which would be used to find the value of *x* is:

8. The equation $3x^2 + 2x - 1 = 0$ has roots α and β . The value of $2\alpha + 2\beta$ is :

(A)
$$-\frac{4}{3}$$
 (B) $-\frac{2}{3}$
(C) $-\frac{1}{3}$ (D) 10

- 9. The equation $x^2 + y^2 6x + 6 = 0$ represents a circle. The coordinates of the centre of the circle are:
 - (A) (3, -3)
 - (B) (-3, -3)
 - (C) (3, 0)
 - (D) (-6, 0)

10. For what values of k is the expression $-\frac{x^2}{4} - x - k$ negative definite ?

- (A) k < 1 (B) k > 1
- (C) k < 4 (D) k > 4

End of Section I

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours 45 minutes for this section

Answer each question in a separate writing booklet. Extra writing booklets are available.

All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing booklet

(a) Evaluate
$$\sqrt[3]{\frac{651}{4\pi}}$$
 correct to two decimal places. 2

(b) Simplify
$$\frac{a^2 - 25}{a - 5}$$
 1

(c) (i) Draw a neat sketch of the parabola y = (2x-1)(x+3) noting x and y intercepts. 2

(ii) Hence, determine the values of x for which (2x-1)(x+3) < 0. 1

(d) If
$$f(x) = x^2 - 3x + 2$$
 and $g(x) = x^2 - x - 4$, for what value of x is $f(x) = g(x)$? 1

(e) On separate number planes, sketch neatly each of the following curves:

(i)
$$y = \frac{1}{x}$$

(ii)
$$y = |x| + 1$$

(iii)
$$y = \sqrt{25 - x^2}$$

1

(f) Find the exact value of θ such that $2\cos\theta = 1$ where $0^{\circ} \le \theta \le 90^{\circ}$. 1

(g) Solve the pair of simultaneous equations:

$$2x + y = 7$$

 $x - 2y = 1.$ 2

(h) What are the domain and range of $y = x^2 \sqrt{1+x}$? 2

(a) A line ℓ whose equation is 2x - y + 8 = 0 has the point Q(2,12) on it. Another line k has gradient -2 and passes through the point P(6,-8). The lines k and ℓ intersect at the point R.

(i)	Show that the equation of the line <i>k</i> is $2x + y - 4 = 0$.	1
(ii)	Show that the co-ordinates of <i>R</i> are $(-1, 6)$.	2
(iii)	Show that the distance of QR is $3\sqrt{5}$.	1
(iv)	Find the perpendicular distance from P to the line ℓ . Leave your answer in surd form.	2
(v)	Find the area of $\triangle PQR$.	1

Question 12 continues on page 6

Question 12 continued

- (b) Shade the region in the plane for which the inequations $y \le 4 x^2$ and $y \ge 0$ hold simultaneously.
- (c) Find the locus of the point P(x, y) whose distance from the point A(4, 0) is always 2 twice its distance from the point B(1, 0).
- (d) The general form of a line ℓ passing through the point of intersection of x-2y+5=0 and x+y+2=0 is (x-2y+5)+k(x+y+2)=0.
 - (i) Show that the gradient of line ℓ is $\frac{1+k}{2-k}$. 2
 - (ii) Hence find the equation of the line passing through the point of intersection of x-2y+5=0 and x+y+2=0 and has gradient 2. Leave your answer in general form.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet

(a) Two ships set sail from a point *O*. The first ship sails for 45 nautical miles on a course bearing N32°W to a point *Y* and the second ship sails for 63 nautical miles on a course bearing N58°E to a point *Z*.

	(i)	Draw a half-page diagram representing the above information.	1
	(ii)	Find, to the nearest nautical mile, the distance YZ.	2
(b)	The adja angle of	cent sides of a parallelogram have lengths 4 cm and 6 cm and they include an 60° . Calculate the length of the shorter diagonal to 2 decimal places.	2
(c)	Given th	at $\tan \theta = -\frac{5}{12}$ and θ is obtuse, find $\sin \theta$ and $\sec \theta$.	2
(d)	If $\sin\theta =$	= x, express $\frac{1-\cos^2\theta}{\sec^2\theta}$ in terms of x.	2
(e)	(i) S	how that $\cos\theta \tan\theta = \sin\theta$	1

- (ii) Hence solve $8\sin\theta\cos\theta\tan\theta = \csc\theta$ for $0^\circ \le \theta \le 360^\circ$. 3
- (f) The distance, d km, between two ports P_1 and P_2 can be found from the calculation:

$$d^{2} = 900 \left[\left(\frac{\sin 44^{\circ}}{\sin 26^{\circ}} \right)^{2} + \left(\frac{\sin 19^{\circ}}{\sin 21^{\circ}} \right)^{2} \right].$$

- (i) Determine the distance, d, from port P_1 to port P_2 , correct to two decimal places. 1
- (ii) Determine the time it will take to sail from P_1 to P_2 at an average speed of 10km/h. **1** *Give your answer to the nearest minute.*

Question 14 (15 marks) Use a SEPARATE writing booklet

(a) If
$$g(x) = x^2 + 3x + 5$$
, show that $g(a+1) = g(a) + 2(a+2)$ 2

(b) Find
$$\lim_{x \to \infty} \frac{x^2 - x - 12}{x^2 - 4x}$$
 1

(c) Differentiate:

(i)
$$x^4 + x^{-1}$$
 1

(ii)
$$(x^2-1)^5$$
 2

(iii)
$$\frac{x-3}{5x+7}$$
 2

(d) Find the equation of the tangent to the curve $y = 2x^2 - 4x + 1$ at the point where x = 1. 2

(e) A function is defined by
$$f(x) = \begin{cases} x, & \text{for } -1 \le x \le 1 \\ x(2-x), & \text{for } 1 < x \le 2 \end{cases}$$

(i) Find
$$f(0) + f(1.5)$$
 1

- (ii) Sketch the graph y = f(x) for $-1 \le x \le 2$. 2
- (iii) The horizontal line y = k meets the graph of y = f(x) *exactly once.* 2 Find the range of values of k for this to be true.

Question 15 (15 marks) Use a SEPARATE writing booklet

(a) If α and β are the roots of the equation $2x^2 + 7x + 4 = 0$, find the value of :

(i)	$\alpha + \beta$			1
(\mathbf{I})	$u \cdot p$			

(ii) $\alpha\beta$ 1

(iii)
$$\alpha^2 + \beta^2$$
 2

(b) For the parabola $(y-1)^2 = 4(x+4)$, find:

(c)

(α)	(i)	The co-ordinates of the vertex.	1
	(ii)	The co-ordinates of the focus.	1
	(iii)	The equation of the directrix.	1
	(iv)	The length of the latus rectum.	1
	(v)	Its x and y intercepts.	2
(β)	Hence	e, draw a neat sketch of the parabola.	1
Find t distin	the valu ct roots	es of <i>m</i> for which the quadratic equation $x^2 - 3mx + 9 = 0$ has real and	2

(d) If one of the roots of $x^2 + ax + b = 0$ is three times the other, prove that $16b = 3a^2$. 2

Question 16 (15 marks)

(a)

The above figure shows a triangle ABC such that AB = 5cm, AC = 4cm and $\angle BAC = 60^{\circ}$. D is a point on BC such that AD bisects $\angle BAC$.

(i) Express the area of
$$\triangle ABD$$
 in terms of *x*. 1

(ii) Hence, using triangles ADC and ABC, show that
$$x = \frac{20\sqrt{3}}{9}$$
. 2

(b) For what values of *m* is y = mx - 6 a tangent to the parabola $y = x^2 - 2x + 3$? **3**

Question 16 continues on page 11

(c)

A straight line ℓ with gradient *m* passes through the point (0,1). The line ℓ also cuts the parabola $x^2 = 4y$ at two points $A(x_1, y_1)$ and $B(x_2, y_2)$ as shown above.

(i)	Show that the equation of the line ℓ is $y = mx + 1$.	1
(ii)	Line ℓ cuts the parabola at two distinct points. Show that x_1 and x_2 are the roots of the equation $x^2 - 4mx - 4 = 0$.	2

(iii) Show that
$$(x_2 - x_1)^2 = (x_2 + x_1)^2 - 4x_1x_2$$
.
Hence, or otherwise find $(x_2 - x_1)^2$ in terms of m .

2

(iv) From (iii), show that
$$AB = 4(1+m^2)$$
. 3

End of Examination

 $2 \cdot \frac{2}{2 - \sqrt{3}} \times \frac{2 + \sqrt{3}}{2 + \sqrt{3}} = \frac{2(2 + \sqrt{3})}{2^2 - (\sqrt{3})^2}$ ò 8. 2x+2B = 2 (x+B) MULTIPLE CHOICE: ĥ f(3) =-1. In that f(3)=2. 50 (c). (3,-1) does not satis : a=486=12 $\frac{d}{d\pi} \left(2 \chi^{1/2} \right) = \chi^{-1/2} =$ range ratinfied 420; $\Rightarrow (-1)^2 - 4 \times (-\frac{1}{4}) \times (-k) < 0$ Nant 2x-4= Lo must be (A). For completeness, Ŀ 4 [-71 (cale.) [-708 994 709... Gradient function is $\lim_{n\to\infty} 3L^{\circ} = \frac{15}{15} \Rightarrow \chi = \frac{15}{15}$: untre c(3,0) & 20 (c) 1-6x+4 Damain satisfies 7-2,022=7. $(\chi - 3)^{2} + \gamma^{2} = 3$ $\alpha = -(-7) \pm \sqrt{(-7)^2 - 4_{x,2x}(-2)}$ kequire $\Delta < 0$ 1 - 7 1 0 5 スマー :: Suggested Solution (s) X THE NOT 01 75165 7 = 1 49 + 16 = 2x-z or -z :(A) 1 1 1 6 1 SECHON 4+213 6 4+15 SECTION I 2×2 tan 36 :. (c) 2012 Year 11 Mathematics (2 unit) Yearly SOLUTIONS :"(n)=2x-4 ايخ (ج) : Ś Н :: T . However le, i.e. Ð 25=14,5 5.c 10.8 Auadrah'ı Formula rationalising 3. D 8. A 4. A 9. C h^2 + 4ac < 0 2.6 7.C 1.A 6.D 1=(d-4)+(a-x) ite schare Comments =discrimin = 112 C لات شال (h) Domain: 2 = -1; Range Y = 0. 9 (9) Jub. z=2y+1 into 2z+y=7 Ð E (a) (*i*) y - (-8) = -2(x - 6)ie. y=1 & a 2 = 3" → 2(24+)++ -7 =7 5y+2=7 ∜ <u>American 11: (1) 3.73 (3.72783809...</u> 9 Sub. (-1,6) into 22-4+8=0 LHS = 2x(-1)-6+8=0= RHS alucation 12: early thape. LHS = 2x(-1) + 6 - 4 = 0 = Pat): (-116) lies on 22+4-4=0 (ii) Sub. (-1,6) int. 2x+y-4=0 ٠. ۲ I mark for Ŀ $(\alpha \beta \delta \gamma \phi) = (\beta \zeta = \gamma)^{1} = \theta c \alpha \gamma$ $x^{2} - 3x + 2 = x^{2} - x - 4$ (a-5)(a+5) = a+5. <u>م</u> آ--22=-6 = x=3 ې ت Suggested Solution (s) 4+8 = -2x+12 x 22+4-4=0 JEGRON JA $\frac{1}{\lambda_{1}} (\vec{u}) - 3 < \vec{x} < \frac{1}{2},$ el on lo) lies on 2x->+8=0 (1) / Ler shape £. E lines, it must 'Aluertion IL controver 1 fr rounding Smard いた Voint-gradien available other million available Variow metue Comments 4 CF 1. calulatio E HK (c) (J) $\begin{array}{c} \Delta \left[1 \right]_{Lond}^{1} \\ \Delta \left[1 \right]_{Lon$ 1 Ŷ E B S gradient of line is $\frac{1+k}{2-k}$, as required. (ii) 1+k> x2-8x+16+424+4 = 4(2-22+1+1 Y $\Delta^{(4)}(x-2y+5) + k(x+y+2) = 0$ (ii) Circle Ŀ 29'n of line is x-24+5 + x+4,+2= ء م x-24+5+Kx+K++2K=0 3x2+34 (1+K)x+(-2+K)y+(5+2K)=0 1-r $(2-k)_{y} = (1+k)_{x} + (5+2k)$ $(x-4)^{2}+(y-2)^{2}=4\{(x-1)^{2}+y^{2}\}$ Anea = 2 x baje x 1 trigh =2 **₽** $\frac{1}{\left(\frac{1}{2}-\kappa\right)} \propto + \frac{(5+2k)}{(5+2k)}$ PA = 298 = $\frac{25}{\sqrt{5}} \text{ units } \left(= \frac{28\sqrt{5}}{5} \text{ optional}\right)$ Suggested Solution (s) 2×6-1×(-8)+8 2×315×28 9 4 = 12 (eventual 42 u² v √ 2²+ (-i)² 2x-y+7=ov (General-form) 1+K = 2(2-K) 132+62 = Jus or 3/5 (centre (0, -=); radiuj= 1+ 1 4-25 3K = 3 or K= W 2012 Year 11 Mathematics (2 unit) Yearly SOLUTIONS PA = 4Pg2 - & to $\frac{1}{2\sqrt{2}} \left| \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right| = \frac{1}{\sqrt{2}} \left| \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ ornoune Found (e) (i) LHS = con 8. sin & v Salbart distance form. omitted アット 1 Make 4 the Comments Fan (17) |, = |ax,+by;+ y=mx+b. /(21-21)+(41) Subject 94°0 (1) 54.80 km (54.797 402... ii) fine = distance $\theta_{\tau}^{(n)} \times \theta_{\tau}^{(n)} = \frac{\theta_{\tau}^{(n)}}{\theta_{\tau}^{(n)}} \left| \frac{\theta_{\tau}^{(n)}}{\theta_{\tau}^{(n)}} \right|$ (\dot{u}) $2^{1}k_{2} = 9\dot{b}^{1} \div 7z^{2} = 45^{2} + 63^{2}$ shorter diagonal = 4 + 62-2×4×6×con6C Munderon by the comine rule : = 16+36-24 or 2) shorter diagonal = 128 = 5.29cm $Am\theta = \frac{1}{2} = \frac{1}{2}$ 12 = 71nm. (77.420 927 ... 12 Suggested Solution (s) *I*I = sint 8 x (1-dint 8) $= x^2 \left(|-x^2 \right)$ 54.80 5.48 9 in 2" 5hr 29 min 5 = 5994 quadrant · W 4 29 ophona Ē = -13/ Ę <u>ser 10 = un 28</u> No penalty for incorrect roundly meaningful if 5°29' given Pedut mas I mark for lover = sino progress. (miteterm) = | 20f 4 I mark the 5.291 50I ... available Cosine rule WH. Hin No penally for N.B. (YoZ=q) Meaningfu INCULAR IN Comments Commental .

£ E: $\left(O(i) \frac{d}{dx} \left(x + x^{-} \right) \right) = 4x^{3} - x^{-2} \sqrt{2}$ Ē $(e)(i)' f(0) + f(1.5) = 0.75/or^{3}$ (b) $\lim_{x \to \infty} \frac{x^2 - x - 12}{x^2 - 4x} = \lim_{x \to \infty} \frac{x^2}{x^2} = 1\sqrt{10}$ (d) Gradient f $(a) \sqcup IS = g(a+1) = (a+1)^{2} + 3(a+1) + 5$ E $QHS = g(a) + 2(a+2) = a^{2} + 3a + 5 + 2a + 4$ Sean of line is Y=-1V Jundian 14: he gradient is zero, line is horiz. $\frac{d}{d\chi} \left(\frac{\chi}{5\pi + 7} \right)$ $\frac{d}{dx}\left[\left(x^{2}-i\right)^{5}\right]$ - 1 × K × 0, K = 1 Suggested Solution (s) function, $\frac{du}{dx} = 4xy - 4$ = 0 when x == (5x+1) 4 (x-3)-(1-3) 4 = a2+5a+9 v = (52+7)(1) - (2-3) = a + 2a+ 1+ 3a+ 3+ 5 $F = 5(x^{2}-1) \cdot \frac{d}{dx} (x^{-1}) e$ " H). $= a^2 + 5a + q$ $\frac{22}{(5x+1)^2}$ 2012 Year 11 Mathematics (2 unit) Yearly SOLUTIONS (5x+7)2 (5x+7) Office the chain rule of => y =-3 or 5 Dominant Equivalently[d] Let a, B be the roots with p. eguivalu available Comments ins approve à. 1/2=-15/L + y infercepts investigated to x=0 + y2-2y-15=0=> (y-5)(y+3)=0 $\frac{(\lambda)_{\text{transform 15}}}{(a)(i)} = -\frac{7}{12} - \frac{7}{12} - \frac{7}{1$ $\begin{array}{c} (\mathbf{L}) (\mathbf{I}) (\mathbf{I}) V(-\mathbf{h}_{1}^{2}) (\mathbf{i}) S(-\mathbf{h}_{1}^{2}) (\mathbf{i}) \\ (\mathbf{L}) (\mathbf{I}) V(-\mathbf{h}_{1}^{2}) (\mathbf{i}) S(-\mathbf{h}_{1}^{2}) (\mathbf{i}) \\ (\mathbf{L}) (\mathbf{I}) V(-\mathbf{h}_{1}^{2}) (\mathbf{h}_{1}^{2}) (\mathbf{h}_{1}^{2}) \\ (\mathbf{L}) (\mathbf{I}) V(-\mathbf{h}_{1}^{2}) \\ (\mathbf{L}) (\mathbf{I}) V(-\mathbf{h}_{1}^{2}) (\mathbf{h}_{1}^{2}) \\ (\mathbf{L}) (\mathbf{I}) V(-\mathbf{h}_{1}^{2}) \\ (\mathbf{L}) (\mathbf{L}) (\mathbf{L}) (\mathbf{L}) \\ (\mathbf{L}) (\mathbf{L}) (\mathbf{L}) (\mathbf{L}) \\ (\mathbf{L}) (\mathbf{L}) \\ (\mathbf{L}) (\mathbf{L}) (\mathbf{L}) \\ (\mathbf{L}) (\mathbf{L}) \\ (\mathbf{L}) (\mathbf{L}) (\mathbf{L}) \\ (\mathbf{L}) \\ (\mathbf{L}) (\mathbf{L}) \\$ A= 1x 5x x x sin 30° = 52 av $\Rightarrow x^2 - 2x + 3 = mx - 6$ or z= 2013, as required. [markfor] Ŷ Ar(AABO) + Ar(DAOC) = Ar(DABC), i.e. A= zx 4x xx sin 30 = x cm & $= 3_{1}(-\frac{2}{4})^{2} = b \text{ or } 3a^{2} = 16b, ot require$ Als alb = b, ie, 3d = b. Jub a = A Then at 13 = - a , i.e., ta = - a or d= -= m²-470= (m+2)(m-2)0 در کارزjv). x intercept corresponds to y = 0⇒ 1(2) (-3m) -4x 1x9 x 2 = 3/m - 3620 unation 16: (a) (i) AREA of DABD and (m+2) = 36 V Solving simultaneoully 1 y= x2 (f.) (f.) D= V = 1 = 1 = 1 (2+m) - 2 adjunden) 0= 6+ 2(2+m) - 5 m<+2 or m>2 1/4 or - 3.75 $= (-\frac{1}{2})^{2} - 2 \times 2$ Suggested Solution (s) $(y-1)^{2} = 4(x+4)$ → V shape x V features (-> m+1 = +6 ,) + m=8 ~ 4) Bundion 16 continued over h=mx-6 the find that the all three intercepts - 30 - 1 A in lies of process. omitted. intercept) To it deduct 62-4ac >0 2 mar 53-المه ولا 3 oJ 4 nux,it units A=fabsh(Comments DYO W July C $\left| : \left(\chi_{2}^{-} \chi_{1}^{+} \right)^{2} = \left(\psi_{1}^{+} \chi_{2}^{-} = -\psi_{1}^{+} \right)^{2} = \left(\psi_{1}^{+} \chi_{1}^{-} + \psi_{1}^{-} + \psi_{1}^{-} \right)^{2} = \left(\psi_{1}^{+} \chi_{1}^{+} + \psi_{1}^{-} + \psi_{1}^{+} + \psi_{1}^{+} \right)^{2} = \left(\psi_{1}^{+} \chi_{1}^{+} + \psi_{1}^{+} \right)^{2} = \left(\psi_{1}^{+} \chi_{1}^{+} + \psi_{1}^{+} + \psi_{1}$ From (ii) x1+x2 = 4m & (iii) 245 = (22-22) root of Myhlies & (ii) Lelving I conditates of the points of (u) From y = mx + b it is dear Intertation of the graphs are 7 magin $RH(=(z_1+z_1)^2-4z_1z_2$ trom graph we know that guired to y- unterret is 1 them the ucuation lo const-2,2-22,22+21,2 2HS Suggested Solution (s) thence in , In one the = $x_1^2 - 2x_1x_1 + x_1^2$ x1+2x1x1+x1-4x1x1 X ²=4(mx+1 -4mx-4. Huven ohus y = MI + W = 16m + 16.V Mury HAWEN × = 44 2012 Year 11 Mathematics (2 unit) Yearly SOLUTIONS

Product of intreption Sum of intertinent 18 21 = 44, with the 442 $| J_{abbh} = \sqrt{(\chi_{L} - \chi_{l})^{2} + (y_{Z} - y_{l})^{2}}$ $\frac{1}{2} \frac{1}{2} \frac{1}$ Comments (mark. S μ (1V) From the distance formula 11 1 u $\sqrt{(l_{m_{\pm}l_{\ell}})(1+m^{2})}$ $\sqrt{ll}(m^{1}+1)^{2}$ $If Y_1 = Y_2 = M = 0$ If A = 4 units $\sqrt{\left(\left(\mathcal{X}_{1}-\mathcal{X}_{1}\right)^{2}+\frac{1}{\left(\left(\mathcal{X}_{2}+\mathcal{X}_{1}\right)^{2}\left(\mathcal{X}_{2}-\mathcal{X}_{1}\right)\right)^{2}}\right)^{2}}$ V 16m + 16 + 16 (4m) (16m + 16 $\sqrt{\left(\left|l_{m}^{1}+\left|l_{0}\right\rangle\right)+m^{2}\left(\left|l_{m}^{1}+\left|l_{0}\right\rangle\right)}$ 4 (m²+1), as required Suggested Solution (s) $= \frac{1}{4} \left(\lambda_{1}^{2} - \chi_{1}^{2} \right) \mathbf{v}$ rò réhoy Difference of Squared. ; m+1 >0 (Jzzy42) lie on panaloolu $|(\chi, \chi)\rangle$ x= 44 Comments process 2 marb) fo (sabuding) meaning 1/2 for

4 of 4.