

2010 Preliminary Course FINAL EXAMINATION Tuesday 14th September

Mathematics

General Instructions

- Reading Time 5 minutes.
- \circ Working Time 3 hours.
- Write using a black or blue pen.
- Approved calculators may be used.
- All necessary working should be shown for every question.
- Begin each question in a new booklet.

Total marks (120)

- Attempt Questions 1- 10.
- All questions are of equal value.

Outcomes to be Assessed:

A student:

- P2 provides reasoning to support conclusions which are appropriate to the context.
- **P3** performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities.
- **P4** chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques.
- **P5** understands the concept of a function and the relationship between a function and its graph.

2

Questi	ion 1 (12 Marks)	Use a Separate Booklet	Marks
a)	Expand and simplify: $(x-3)$	3)(2x+1)	2
b)	Simplify $\sqrt{27} + \sqrt{12}$		2
c)	Express the decimal 0.21 as	s a fraction in simplest form.	2
d)	Factorise the following expr $4x^2 - 16$	ression fully:	2
e)	Rationalise the denominator $\frac{\sqrt{3}}{3-\sqrt{2}}$	· of:	2

f) Solve for x:

$$\frac{2x-1}{5} = \frac{3x+2}{4}$$

<u>2010 Pi</u>	2010 Preliminary Final Examination			Mathematics
Quest	ion 2	(12 Marks)	Use a Separate Booklet	Marks
a)	Is the	function $f(x) =$	$8x^3 - 7x$ even, odd or neither? (Show working). 2
b)	For th	the function $y = 2$	x +1:	
	i)	Sketch, showin	g all the essential features.	2
	ii)	State the doma	in and range.	2
c)	Sketc	h the graph of f	$f(x) = x^2 + 5x + 6$, showing all essential features	3 3
d)	Show simul	the region of the taneously (do no	e number plane where the following hold t find points of intersection):	3

$$x^2 + y^2 \le 9$$
$$y < x$$

Que	stion 3	(12 Marks)	Use a Separate Booklet	Marks
a)	A roc is 80 out to	ck climber is standi metres above sea l o sea is 32^0 .	ing on the top of a vertical cliff which evel. The angle of depression of a tanker	
	i)	Draw a diagram	to show this information	1
	ii)	Calculate the dis the cliff to the ta	stance (to the nearest metre) from the base of unker.	2
b)	Two top o 37 ⁰ .	yachts, 250 m apar f a cliff. The angle It is known that Y	rt, are both due east of a lighthouse, which is o of elevation of the lighthouse from Yacht A is facht A is exactly 300 m from the lighthouse.	n S

(Assume the cliff meets the water at right angles)

- i) Using the cosine rule, show that *x* is 522 m (to the nearest metre).
- ii) Using the sine rule find the angle of elevation (to the nearest minute) of the lighthouse from Yacht B.

2

Mathematics

2

Question 3 (continued)Marksc)Solve $2\cos^2\theta = 1$ for $0^\circ \le \theta \le 360^\circ$ 3

d) Solve for x : 4^2	$2^{2x-1} = 8$
--------------------------	----------------

С

-2

A x

6

Ď(1, −2)

В

4

(i)	What acute angle does the line BC make with the positive <i>x</i> -axis? Give your answer to the nearest degree.	2
(ii)	Find the midpoint (M) of the interval AB.	1
(iii)	Show that the equation of the line CD is given by $2x + 3y + 4 = 0$.	2
(iv)	Show the distance from the point M to the line CD is equal to $\frac{16\sqrt{13}}{13}$ units.	2
(v)	Given that CD is $\sqrt{13}$ units, calculate the distance AB and hence find the area of the trapezium ABCD.	3

b) Sketch $y = \sin x$ for $0^0 \le x \le 360^0$

2

Mathematics

Question 5 (12 Marks) Use a Separate Booklet Marks

Factorise $a^3 + 8$ c)

2

2

Mathematics

2

Question 5 continues

Question 5 (continued)

e)

		1
i)	Show that the number of sides of the polygon is 24.	1

Mathematics

Marks

1

2

2

ii) Find the size of each interior angle.

Prove that $\triangle AOB = \triangle COD$.

f) Solve $|3x-5| \le 2$

<u>2010 Prel</u>	2010 Preliminary Final Examination		
Question	n 6 (12 Marks)	Use a Separate Booklet	Marks
a) S	Solve the following, leav $x^2 - 6x + 7 = 0$	ving answers in exact simplified form:	3
b) S	Solve $(5^x)^2 - 26(5^x) + 25$	5 = 0 for x .	3
c) S	Show that $-3x^2 + x - 1 < x^2$	0 for all x .	2
d) F	For the equation $2x^2 + 5$	$\delta x - 3 = 0$ with roots α and β , find the ve	alue of:
i) $\alpha + \beta$		1
i	i) αβ		1
i	ii) $\frac{1}{\alpha} + \frac{1}{\beta}$		2

Que	stion 7	(12 Marks)	Use a Separate Booklet	Marks
a)	By co	ompleting the squa	re, find values of a and b such that:	
	i)	$x^2 + 2x + 5 = (x$	$(a+a)^2+b$	2
	ii)	Hence sketch y	$= x^2 + 2x + 5$	2
b)	Consi	der the equation y	$c^2 + (k+3)x + 9 = 0.$	
	For w	nat values of <i>k</i> do	es the equation have:	
	i)	equal roots?		2
	ii)	distinct real root	s?	1
c)	Find t	the value of <i>a</i> if si	$n35^\circ = \cos(a+30)^\circ$	1
d)	Find t	the exact value of	$\sin 120^{\circ} \cos 45^{\circ}$	2

e) Given that
$$\cos \theta = -\frac{4}{5}$$
 and $\sin \theta > 0$, find the exact value of $\tan \theta$ 2

Mathematics

b) A B C

In the diagram, AB = 12 cm, AC = 16 cm and BC = 21 cm.

i)	Find, correct to the nearest minute, $\angle BAC$.	3
ii)	Hence, find the area of $\triangle ABC$.	2

c) For the function $f(x) = \sqrt{4-x^2}$, write down the natural domain and range.	2
--	---

d) Find the value of m in $x^2 + 2mx - 6 = 0$ if one of the roots is 2. 2

Question 9	(12 Marks)	Use a Separate Booklet	Marks
a) Find	values of A B and	C if $x^2 + x - 2 \equiv A(x - 2)^2 + Bx + C$	3

Mathematics

3

b) ABCD is a parallelogram and AD = AE.

Find $\angle DAE$, giving reasons.

c) A golf ball is projected upwards so that its height (*h*) in metres, above the ground, is given by the formula h = 90t - 15t², where t is the time in seconds.
i) When was the ball 75 metres above the ground?
2
ii) How long before the ball falls to the ground?
2
iii) What was the highest point reached by the ball?

Ques	tion 10	(12 Marks)	Use a Separate Booklet	Marks
a)	Prove	that $\tan \theta + \cot \theta$	$\theta = \sec\theta\csc\theta$	3

Mathematics

b) By completing the squares determine the centre and radius of the following circle: $x^2 - 2x + y^2 - 4y - 4 = 0$

In the diagram, AB || CD, and AD and BC intersect at P. Copy or trace the diagram onto your own paper.

If \triangle ABP is similar to \triangle DCP and AB = 5 cm, CD = 7 cm and BC = 12 cm, find the length of BP.

d) Sketch
$$y = \frac{-1}{x+2} + 2$$
 2

e) Show that
$$2(2^{k}-1)+2^{k+1}=2(2^{k+1}-1)$$
 2

End of Exam

Preliminary Final EXAMINATION 2010

Mathematics

SOLUTIONS

Quest	ion 1 Preliminary HSC Examination- Mathematics	2010		
Part	Solution	Marks	Comment	
(a)	(x-3)(2x+1)	2		
	$=2x^2+x-6x-3$			
	$=2x^2-5x-3$			
(b)		2	1 for simplifying	
(0)	$\sqrt{27} + \sqrt{12}$	2		
	$= 3\sqrt{3} + 2\sqrt{3}$			
	_		1 for solution	
	$= 5\sqrt{3}$			
	75			
	- 115			
	$\therefore A = 75$			
(c)	x = 0.212121	2		
	100x = 21.21212121			
	99x = 21			
	$x = \frac{21}{22}$			
	99			
	$0.21 = \frac{7}{33}$			
(d)	$4x^2 - 16$	2		
	$=4(x^2-4)$			
	=4(x+2)(x-2)			
(e)	$\sqrt{3}$ $3+\sqrt{2}$	2		
	$\overline{3-\sqrt{2}}$ $\overline{3+\sqrt{2}}$			
	$=\frac{3\sqrt{3}+\sqrt{6}}{4}$			
	9-2			
	$=\frac{3\sqrt{3}+\sqrt{6}}{2}$			
(f)	$\frac{7}{2n+2}$	2		
(1)	$\frac{2x-1}{5} = \frac{5x+2}{4}$	2		
	4(2x-1) = 5(3x+2)			
	8x - 4 = 15x + 10			
	7x = -14			
	x = -2			

S	<u>S</u>						
Ques	tion 2 Preliminary HSC Examination- Mathematics	2010					
Part	Solution	Marks	Comment				
(a)	$f(x) = 8x^{3} - 7x$ $f(-x) = 8(-x)^{3} - 7(-x)$ $= -8x^{3} + 7x$ $= -(8x^{3} - 7x)$ $= -f(x)$ As $f(-x) = -f(x)$, the function is odd.	2	 2 for showing substitution for -x and correct result of odd 1 for correct sub of -x 				
(b) i)	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	2	 2 correct shape, <i>y</i> intercept, another point (eg (1, 3) and asymptote <i>y</i> = 1 1 correct asymptote <i>y</i> = 1 and general shape 				
(ii)	Domain: all real x Range: $y > 1$	2	1 mark for each				
(c)		3	Intercepts, vertex and scale				
	<pre></pre>	2	correct Incorrect scale for the 6 and $-\frac{1}{4}$ Intercepts and shape				

Question 2		Preliminary HSC Examination- Mathematics	2010	
Part	Solution		Marks	Comment
(d)	<	y 4 2 -4 -2 -2 -4 -2 -4	3 2 1	for correct graphs incl dotted line for $y = x$ and correct region shaded incorrect region or $y = x$ not dotted correct circle

Question 3		Preliminary HSC Examination- Mathematics	2010	
Part	Part Solution		Marks	Comment
(a)	i) 58 80	32 32 d	1	1 for correct diagram clearly showing angle of depression
	ii) tan 58 80 tan 58 d	$= \frac{d}{80}$ = d = 128.026 = 128 m (nearest m)	2	2 correct calculator answer 1 correct initial trig statement

Quest	tion 3	Preliminary HSC Examination- Mathematics	2010	
Part	Solution		Marks	Comment
(b)	i)	x 360m 37 143 4250m 37 250m 37 2300)(250) cos(143)	2	 2 for substituting correct data into the correct cosine rule and correct calculator answer 1 for substituting correct data into the correct cosine rule
	$x^{2} = x^{2} = x^{2}$	= 300 + 230 - 2(300)(230)(cos(143) = 272295.326 521.8192 522 (nearest m)		
	ii) <u>sir</u> 3(sii	$\frac{hB}{00} = \frac{\sin 143}{522}$ hB = 0.34587 B = 20.23 $= 20^{\circ}14'$	2	 2 for substituting correct data into the correct sine rule and correct calculator answer. Must use 522m as stated in the previous part (i) 1 for substituting correct data into the correct sine rule
(c)	$2\cos^{2}\theta$ $\cos^{2}\theta$ $\cos^{2}\theta$ $\cos^{2}\theta$		3	3 for all four correct angles 2 for correctly answering 45° and 315° 1 for getting $\cos \theta = \frac{1}{\sqrt{2}}$
(d)	(2² ∴ 4	$4^{2x-1} = 8$ $2^{2x-1} = 2^{3}$ $2^{4x-2} = 2^{3}$ x - 2 = 3 $x = \frac{5}{4}$	2	2 correct answer and setting out 1 for writing $2^{4x-2} = 2^3$

Quest	tion 4	Preliminary HSC Examination- Mathematics	2010	
Part	Solution		Marks	Comment

Quest	tion 4	Preliminary HSC Examination- Mathematics	2010	
Part	Solution		Marks	Comment
(a)	•	B C -2 D(1, -2) A A A A A A A A		
	(i) <i>m_{AB}</i>	$=\frac{4}{2}$		
		= 2	2	2 marks: correct solution
	$m = 1$ $\tan \theta$	$\tan \theta$ $\theta = 2$ $\theta = \tan^{-1} 2$ $= 63.4349^{\circ}$ $= 63^{\circ} (to \ nearest \ deg \ ree)$		1 mark:: correct gradient, incorrect angle OR Incorrect gradient, Correct angle from mistake
	(ii) Mid	point of AB: $M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $M\left(\frac{6+0}{2}, \frac{0+4}{2}\right)$ $M(3, 2)$	1	1 mark: correct answer
	(iii) <i>m</i> ₀	$_{CD} = \frac{y_2 - y_1}{x_2 - x_1}$	2	2 marks: correct solution with correct working
		$=\frac{-2-0}{12} = \frac{-2}{3}$		1 mark: correct gradient, incorrect equation or not enough working.
	Equ	ation of line <i>CD</i>		
	y−: y−(3: ∴	$y_{1} = m(x - x_{1})$ $0 = \frac{-2}{3}(x + 2)$ $y = -2x - 4$ $2x + 3y + 4 = 0$		

Quest	tion 4 Preliminary HSC Examination- Mathematics	2010	
Part	Solution	Marks	Comment
	(iv) $d = \frac{ ax_1 + by_1 + c }{\sqrt{a^2 + b^2}}$ $= \frac{ 2(3) + 3(2) + 4 }{\sqrt{2^2 + 3^2}}$ $= \frac{16}{\sqrt{13}} \times \frac{\sqrt{13}}{\sqrt{13}}$ $= \frac{16\sqrt{13}}{13} units$	2	 2 marks: correct answer with correct working 1 mark: not rationalising denominator OR Not showing how final answer was found
	(v) $AB^{2} = 4^{2} + 6^{2}$ $= 16 + 36$ $AB = \sqrt{52}$ $= 2\sqrt{13}$ $Area = \frac{1}{2}(a+b)h$ $= \frac{1}{2}(\sqrt{13} + 2\sqrt{13}) \times \frac{16\sqrt{13}}{13}$ $= \frac{1}{2} \times 3\sqrt{13} \times \frac{16\sqrt{13}}{13}$ $= 24 \text{ units}^{2}$	3	 3 marks: correct answer with correct working 2 marks: distance correct incorrect area formula correct area from mistake 1 mark: correct distance
(b)	y 2 1 -1 -2 \downarrow	2	

Ques	tion 5 Preliminary HSC Examination- Mathematics	2010	
Part	Solution	Marks	Comment
(a)	$\angle ACB = 60^{\circ}$ (vert.opp. $\angle DCE$)	2	
	$\angle ABC = 62^{\circ}$ (angle sum of triangle = 180°)		
	$\theta = 62^{\circ}$ (alternate angle to $\angle ABC$)		
	$\phi = 58^{\circ}$ (alternate angle to $\angle BAC$)		
(b)	f(-1) = 2(-1)-3	2	
	= -2-3		
	= -5		
	f(1) = -3		
	f(-1)+f(1) = -5 + -3		
	=-8		
(c)	$a^3 + 8$	2	
	$=(a+2)(a^2-2a+4)$		
(d)	i)	1	
	S = 180n - 360	1	
	3960 = 180n - 360		
	4320 = 180n		
	24 = n		
	ii) $3960 \div 24 = 165^{\circ}$	1	
		1	
(e)	$\angle BAO = \angle OCD \ (= 90^{\circ} given)$	2	
	$\angle BOA = \angle COD$ (vertically opposite $\angle =$)		
	BO = OD (given)		
	$\cdot A A O D = A C O D (A A S)$		
	$\therefore \Delta AOB = \Delta COD (AAS)$		
(f)	3r-5 < 2	2	
(-)	$ -2 \le 3x - 5 \le 2$	_	
	$3 \le 3x \le 7$		
	$1 \le x \le \frac{7}{2}$		
	3		

Quest	tion 6 Preliminary HSC Examination- Mathematics	2010	0
Part	Solution	Marks	Comment
(a)	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-6 \pm \sqrt{(-6)^2 - 4 \times 1 \times 7}}{2 \times 1}$ $= \frac{6 \pm \sqrt{36 - 28}}{2}$ $= \frac{6 \pm \sqrt{8}}{2}$ $= \frac{6 \pm 2\sqrt{2}}{2}$ $= 3 \pm \sqrt{2}$ $\approx 1.59, 4.41$	3	
(b)	$(5^{2})^{x} - 26(5^{x}) + 25 = 0$ Let $m = 5^{x}$ $m^{2} - 26m + 25 = 0$ (m - 25)(m - 1) = 0 m = 25, m = 1 $5^{x} = 25, 5^{x} = 1$ $\therefore x = 2, x = 0$	3	
(c)	Need to show that $\triangle < 0$ and $a < 0$ (negative definite) $b^2 - 4ac = 1^2 - (4 \times -3 \times -1)$ = 1 - (12) = -11 a = -3 < 0 \therefore Expression is negative definite and will always be less than zero for all x values.	2	

Question 6		Preliminary HSC Examination- Mathematics		2010)
Part	Solution		Ma	arks	Comment
(d)	i) $\alpha + \beta$	$=-\frac{b}{a}$	1		
	:	$= -\frac{5}{2}$			
	ii) $\alpha\beta = \frac{1}{2}$	$\frac{c}{a}$	1		
	=	$-\frac{3}{2}$			
	iii) $\frac{1}{a} + \frac{1}{\beta}$	$= \frac{\alpha + \beta}{\alpha \beta}$	2		
		$= -\frac{5}{2} \div -\frac{3}{2}$			
		$= -\frac{5}{2} \times -\frac{2}{3}$			
		$=\frac{5}{3}$			

Ques	Question 7 Preliminary HSC Examination- Mathematics		2010		
Part	Solution			Marks	Comment
(a)	i) $x^2 + 2x$	$x+5 = (x^{2}+2x+1)+5-1$ $= (x+1)^{2}+4$	2		
	$\therefore a = 1, b$ ii)	= 4 y			
			2		
	< + + + -4	+++++++++++++++> x -2 2 4 -5+			

Quest	ion 7 Preliminary HSC Examination- Mathematics		2010		
Part	Solution			Marks	Comment
(b	i) $x^2 + (k)$	+3)x+9=0	2		
	$b^2 - 4ac =$	= 0			
	$(k+3)^2 -$	$4 \times 1 \times 9 = 0$			
	k = 3 - 9				
	$k^{2} + 6k +$	9 - 36 - 0			
	$k^2 + 6k$	x - 27 = 0			
	(k+9)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1	(k-3) = 0			
		k = 3, -9			
	ii) $b^2 - 4$	ac > 0	1		
	(k+9)(k-1)(k-1)(k-1)(k-1)(k-1)(k-1)(k-1)(k-1	-3) > 0			
	k < -9,	<i>k</i> > 3			
c)	$\cos(90-3)$	$35) = \cos(a+30)$	1		
	.:. 90 –	35 = a + 30			
	a = 25				
	ain 1200 a				
d)	$\sin 120^{\circ} c$	0843	2		
	$=\frac{\sqrt{3}}{\sqrt{3}}\times\frac{1}{\sqrt{3}}$	=			
	$2 \sqrt{2}$	2			
	$=\frac{\sqrt{3}}{\sqrt{3}}$				
	$2\sqrt{2}$				
	TC :				
(e)	It cos is i	negative and sin is positive, angle is in second		2	
	quadrant	3			
	$\tan \theta = -$	4			

a) $ 2x-3 =5x$ 2x-3=5x or -(2x-3)=5x 3x=-3 or -2x+3=5x x=-1 or 7x=3 $=\frac{3}{7}$ Testing $x = -1$ LHS = 2x-3 = 2(-1)-3 = -5 = 5 RHS = 5(-1) = -5	a)	2x-3 = 5x	3	
2x-3 = 5x or - (2x-3) = 5x 3x = -3 or - 2x + 3 = 5x x = -1 or 7x = 3 $= \frac{3}{7}$ Testing $x = -1$ LHS = 2x-3 = 2(-1)-3 = -5 = 5 RHS = 5(-1) = -5				
3x = -3 or - 2x + 3 = 5x x = -1 or 7x = 3 $= \frac{3}{7}$ Testing $x = -1$ LHS = 2x - 3 = 2(-1) - 3 = -5 = 5 RHS = 5(-1) = -5		2x-3=5x or $-(2x-3)=5x$		
x = -1 or 7x = 3 = $\frac{3}{7}$ Testing $x = -1$ LHS = 2x - 3 = 2(-1) - 3 = $ -5 $ = 5 RHS = 5(-1) = -5		$3x = -3 \qquad or - 2x + 3 = 5x$		
$= \frac{3}{7}$ Testing $x = -1$ LHS = 2x - 3 = 2(-1) - 3 = -5 = 5 RHS = 5(-1) = -5	1	x = -1 or $7x = 3$		
$= \frac{-7}{7}$ Testing $x = -1$ $LHS = 2x - 3 = 2(-1) - 3 $ $= -5 $ $= 5$ $RHS = 5(-1)$ $= -5$	1	3		
Testing $x = -1$ LHS = 2x-3 = 2(-1)-3 = -5 RHS = 5(-1) = -5	1	$=\frac{1}{7}$		
LHS = 2x - 3 = 2(-1) - 3 = -5 = 5 RHS = 5(-1) = -5	1	Testing $x = -1$		
$ \begin{array}{c} = -5 \\ = 5 \\ RHS = 5(-1) \\ = -5 \end{array} $	1	LHS = 2x - 3 = 2(-1) - 3		
=5 $RHS = 5(-1)$ $= -5$	1	= -5		
RHS = 5(-1) $= -5$	1	=5		
= -5	1	RHS = 5(-1)		
	1	= -5		
3	1	3		
Testing $x = \overline{7}$	I	Testing $x = \overline{7}$		
$ IHS - 2r - 3 - 2(\frac{3}{2}) - 3 $	1	$IHS = 2r-3 - 2(\frac{3}{2}) - 3 $		
LIIS = 2x-5 = 2(7)-5	I	LIIS = 2x - 5 = 2(7) - 5		
$- _{-2}\frac{1}{2} $	1	$- _{-2}\frac{1}{ }$		
	1			
	1			
$-2\frac{1}{2}$	1	$-2\frac{1}{2}$		
	1	7		
$RHS = 5 \times (\frac{3}{-})$	1	$RHS = 5 \times (\frac{3}{2})$		
	1			
$=2\frac{1}{7}$	1	$=2\frac{1}{7}$		
	1	3		
$\therefore x = \frac{3}{7}$ is a solution	1	$\therefore x = \frac{3}{7}$ is a solution		
' is a solution	1	, is a solution		
b) i) 3	b)	i)	3	
$Cos A = \frac{12^2 + 16^2 - 21^2}{12^2 + 16^2 - 21^2}$	1	$C_{05}A = \frac{12^2 + 16^2 - 21^2}{12^2 + 16^2 - 21^2}$		
$2 \times 12 \times 16$	1	$2 \times 12 \times 16$		
= -0.10677	1	= -0.10677		
$A = 96^{\circ}8^{\circ}$	1	$A = 96^{\circ}8^{\circ}$		
	I		2	
	1	11)	2	
$Area = \frac{1}{2} \times 12 \times 16 \times \sin 96^{\circ}8$	I	$Area = \frac{1}{2} \times 12 \times 16 \times \sin 96^{\circ}8'$		
= 95.451	I	= 95.451		
$=95.5cm^{2}(1dp)$	1	$=95.5cm^{2}(1dp)$		

c)	Domain: $-2 \le x \le 2$	2	
	Range: $0 \le y \le 2$		
d)	If 2 is a root then it satisfies the equation:	2	
	$2^2 \cdot 2$ $2 \cdot c \cdot 0$		
	$2^{-}+2\times m\times 2-6=0$		
	4 + 4m - 6 = 0		
	4m - 2 = 0		
	2		
	$m = \frac{1}{4}$		
	$-\frac{1}{2}$		
	$-\frac{1}{2}$		

Ques	tion 9 Preliminary HSC Examination- Mathematics 2	010	
Part	Solution	Marks	Comment
(a)	$LHS = x^{2} + x - 2 \qquad RHS = A(x - 2)^{2} + Bx + C$ $= Ax^{2} - 4Ax + 4A + Bx + C$ $= Ax^{2} - x(4A - B) + 4A + C$	3	3 for correct solutions
	Equating coefficients, $A = 1 - (4A - b) = 1 \qquad 4A + C = -2$ $-4 + B = 1 \qquad 4 + C = -2$ $B = 5 \qquad C = -6$		2 for two correct solutions1 for one correct solution
(b)	$\langle ADE + \langle BCD = 180^{\circ} (\text{cointerior angles } AD AE)$ $\langle ADE = 180^{\circ} - 170^{\circ}$ $= 70^{\circ}$	3	3 for showing clear logical working with correct reasoning and correct answer
	$\langle AED = \langle ADE \text{ (opposite equal sides of isosceles } \Delta AED \text{)}$ $\langle AED = 70^{\circ}$		2 one incorrect step or reason1 only one step correctly completed
	$\therefore \langle DAE = 180^{\circ} - \langle ADE - \langle AED \text{(angle sum of a triangle)} \\ = 180^{\circ} - 70^{\circ} - 70^{\circ} \\ = 40^{\circ}$		completed

Quest	ion 9 Preliminary HSC Examination- Mathematics	2010	
Part	Solution	Marks	Comment
(c)	i) let h = 75, $75 = 90t - 15t^{2}$ $15t^{2} - 90t + 75 = 0$ $t^{2} - 6t + 5 = 0$ (t - 5)(t - 1) = 0 \therefore the ball is 75m at 1 second and 5 seconds	2	 2 for correct answer with working 1 for creating the correct quadratic and putting it equal to zero ready to solve
	ii) let h = 0, $0 = 90t - 15t^2$ 0 = 15t(6-t) t = 0, 6 \therefore the ball falls to the ground after 6 seconds	2	2 for correct answer with working1 for creating the correct factorised quadratic and putting it equal to zero ready to solve
	(iii) let $t = 3$, $h = 90(3) - 15(3)^2$ = 270 - 135 = 135 \therefore the highest point reached by the ball is 135m.		2 for correct answer with working1 for knowing to substitute three seconds to find highest point

Ques	tion 9	Preliminary HSC Examination- Mathematics	2010	
Part	Solution		Marks	Comment
(a)	$LHS = x^2 +$	$-x-2 RHS = A(x-2)^{2} + Bx + C$ = $Ax^{2} - 4Ax + 4A + Bx + C$ = $Ax^{2} - x(4A - B) + 4A + C$	3	3 for correct solutions
	Equating contrast $A = 1$ –	befficients, -(4A-b) = 1 $4A+C = -2-4+B = 1$ $4+C = -2B = 5$ $C = -6$		2 for two correct solutions1 for one correct solution

Quest	ion 9 Preliminary HSC Examination- Mathematics	2010	
Part	Solution	Marks	Comment
(b)	$\langle ADE + \langle BCD = 180^{\circ} (\text{cointerior angles } AD AE)$ $\langle ADE = 180^{\circ} - 170^{\circ}$ $= 70^{\circ}$	3	3 for showing clear logical working with correct reasoning and correct answer
	$\langle AED = \langle ADE \text{ (opposite equal sides of isosceles } \Delta AED \text{)}$ $\langle AED = 70^{\circ}$ $\therefore \langle DAE = 180^{\circ} - \langle ADE - \langle AED \text{ (angle sum of a triangle} \text{)}$)	2 one incorrect step or reason1 only one step correctly completed
	$= 180^{\circ} - 70^{\circ} - 70^{\circ} = 40^{\circ}$		
(c)	i) let h = 75, $75 = 90t - 15t^2$ $15t^2 - 90t + 75 = 0$ $t^2 - 6t + 5 = 0$ (t - 5)(t - 1) = 0 \therefore the ball is 75m at 1 second and 5 seconds	2	2 for correct answer with working1 for creating the correct quadratic and putting it equal to zero ready to solve
	ii) let h = 0, $0 = 90t - 15t^2$ 0 = 15t(6-t) t = 0, 6 \therefore the ball falls to the ground after 6 seconds (iii)	2	2 for correct answer with working1 for creating the correct factorised quadratic and putting it equal to zero ready to solve
	let <i>t</i> = 3, <i>h</i> = 90(3) −15(3) ² = 270 −135 = 135 ∴ the highest point reached by the ball is 135m.		2 for correct answer with working1 for knowing to substitute three seconds to find highest point

	Question 10 Solutions	Marks	Comment
a)	$LHS = \frac{\sin\theta}{\theta} + \frac{\cos\theta}{\sin\theta}$	3	Correct solution
	$=\frac{\sin^2\theta + \cos^2\theta}{\sin^2\theta + \cos^2\theta}$	2	first 2 steps
	$\sin \theta \cos \theta$ = $\frac{1}{\sin \theta \cos \theta}$ = $\sec \theta \cos \sec \theta$ = RHS	1	first step only
b)	$x^{2} - 2x + 1 + y^{2} - 4y + 4 = 4 + 1 + 4$	3	Correct working, radius and centre
	$(x-1)^{2} + (y-2)^{2} = 9$ centre (1, 2) radius 3	2	1 error
		1	correct centre and radius from poor attempt correct completing square for one letter
c)	$\frac{x}{12-x} = \frac{5}{7}$ (corresponding sides in similar triangles	2	answer plus reason
	are in the same ratio) 7x = 60 - 5x	1	
	12x = 60	1	answer only
	x or BP = 5		
d)		2	both asymptotes, intercepts or point on arms and shape
		1	both asymptotes or 1 error
	<		
e)	LHS = $2^{k+1} - 2 + 2^{k+1}$	2	both of the first 2 lines of working
	= 2(2) - 2 = 2(2 ^{k+1} -1) = RHS	1	first line of working only before giving result