

2011 Preliminary Course FINAL EXAMINATION Monday, September 12th

Mathematics

General Instructions

- Reading Time 5 minutes.
- \circ Working Time 3 hours.
- Write using a black or blue pen.
- Approved calculators may be used.
- All necessary working should be shown for every question.
- Begin each question in a new booklet.

Total marks (120)

- Attempt Questions 1- 10.
- All questions are of equal value.

Outcomes to be Assessed:

A student:

- **P2** provides reasoning to support conclusions which are appropriate to the context.
- **P3** performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities.
- **P4** chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques.
- **P5** understands the concept of a function and the relationship between a function and its graph.

Ques	tion 1 (12 Marks)	Use a Separate Booklet	Marks
a)	Evaluate correct to 1 decir	mal place $\frac{\sqrt[5]{32}}{6.1+3.2}$	2
b)	Factorise completely: <i>xy</i>	-2yz+4x-8z	2
c)	Simplify: $\frac{x}{4} - \frac{3x+1}{6}$		3
d)	Write 0.00014 in scientific	e notation	1
e)	Find the value of b if 1	$1 + 2\sqrt{18} = 11 + \sqrt{b}$	1
f)	Factorise $4m^2 - 9$		1
g)	Solve for x: $\frac{1}{x} - 3 = \frac{1}{2x}$		2

Quest	tion 2	(12 Marks)	Start a new booklet	Marks
a)	Expres	s 0.46 as a com	mon fraction.	2
b)	Mr Daı for his	ndy's water rate a property is now	for his property has increased by 8%. The new water rate \$256. Find the old water rate (correct to the nearest dollar)	2
c)	Solve t	he inequality 2-	-5x < 7.	2
d)	Expres	s $\frac{1+\sqrt{3}}{5-2\sqrt{3}}$ as a fi	raction with a rational denominator.	2
e)	Solve t	he equation 2 co	$\beta = -\sqrt{3}$ for $0^\circ \le \beta \le 360^\circ$	2

f) Find the exact value of $\tan 120^{\circ}$.

2

Consider the three points *A*, *B* and *C* on the number plane as shown above. The equation of the line *AC* is given by 2x - 3y - 2 = 0 and the equation of the line *BC* is given by 4x + 7y - 56 = 0. The point *B* has coordinates (0, 8).

a)	Find the coordinates of the point <i>A</i> .	1
b)	Show that the point C has the coordinates (7, 4).	2
c)	Find the exact distance of AC in simplest form.	2
d)	The line <i>AC</i> makes an angle θ with the positive <i>x</i> -axis. Calculate θ to the nearest minute.	2
e)	Find the equation of the line which is perpendicular to <i>AC</i> and passes through <i>B</i> .	2
f)	Show that the perpendicular distance from <i>B</i> to <i>AC</i> is $2\sqrt{13}$	2
g)	Calculate the area of $\triangle ABC$.	1

Marks

Question 4 (12 Marks)

Start a new booklet

a) Factorise and simplify
$$\frac{x^3 - 8}{2x^2 - 3x - 2}$$

In the diagram below triangle *ADE* is right angled at *D*. *BC* is parallel to *DE*. b) AB = 5m, DB = 4m and DE = 6m.

i)Prove that
$$\triangle ABC$$
 is similar to $\triangle ADE$.2ii)Find the length of BC 2iii)Find the area of $DBCE$.1iv)Show that $AB \times EC = AC \times BD$, giving reasons.2

State the domain and range of the curve with equation $y = \frac{3}{x} + 1$ c) 2

3

Questi	ion 5	(12 Marks)	Start a new booklet	Marks
a)	The su	m of the interior angle	s of a regular polygon is 2520°	
	i)	Show that the polygo	n has sixteen sides.	1
	ii) Find the size of each interior angle to the nearest minute.		interior angle to the nearest minute.	1
b)	A give	n parabola has the equ	ation $y = x^2 - 4x - 12$	

i)	By completing the square, write the equation of the parabola in the form $y = (x-h)^2 + k$	1
ii)	State the coordinates of the vertex.	1

iii)	Hence or otherwise find the <i>x</i> -intercepts of the parabola $y = x^2 - 4x - 12$.	2
iv)	Sketch the parabola showing all relevant features.	2

c) The equation $2x^2 - 7x + 12 = 0$ has roots α and β . Find the value of:

i)	$\alpha + \beta$	1
ii)	lphaeta	1
iii)	$\alpha^2 + \beta^2$	2

a) Find the value of a if
$$\tan 15^\circ = \cot(a+30)^\circ$$
 1

2

b) Solve for
$$p: 2^{p+2} = 16$$

c) A ship A has sailed 20 nautical miles from a port P on a bearing of 055° . Ship B has sailed 27 nautical miles from port P on a bearing of 115° .

i))	Copy the diagram above and mark all given information.	1
ii	i)	Show that the angle $\angle APB = 60^{\circ}$.	1
ii	i)	Calculate the distance between the two ships to the nearest nautical mile.	2
iv	v)	Show that $\angle ABP = 46^{\circ}$ correct to the nearest degree.	2
v)	Find the bearing of A from B.	1

d) If
$$f(x) = x^2$$
 and $g(x) = 2x+1$, find $f(g(2))$. 2

Questi	ion 7	(12 Marks)	Start a new booklet	Marks
a)	Solve	$4^x - 9(2^x) + 8 = 0$		3
b)	Consid	ler two functions $f(x)$	and $g(x)$.	
	i)	If $f(x) = g(x) + g(-x)$) show that $f(x)$ is an even function.	1

ii) Is f(x) = g(x) - g(-x) also an even function? Give reasons for your answer. 1

c)	i)	Sketch the graph of $y = x-4 - 2$ showing all important features.	2
	ii)	On the same number plane shade the region where $y \ge x-4 - 2$ and $y < 2$	2

d) Determine the value of *a* so that $y = ax^2 + 2x + a$ is positive definite. **3**

a) If
$$\tan \theta = \frac{7}{24}$$
 and $180 \le \theta \le 360^\circ$, find the exact value of $\sin \theta$ 2

b) A function is defined by the rule:

.

$$f(x) = \begin{cases} \frac{1}{x}, & x < 0\\ x+2, & x \ge 0 \end{cases}$$

Find:

(i)
$$f(-3)$$
 1

(ii)
$$f(b^2)$$
 1

c) Calculate the value of x in the diagram below, if the area of the triangle is $22\sqrt{3}$ cm². 2

d) The equation of a circle is $(x-1)^2 + (y+2)^2 = r^2$

(i) Write down the coordinates of the centre of this circle. 1

2

(ii) If x + y = 4 is a tangent to this circle, find the exact value of r.

e) Show that
$$\tan \theta - \frac{\sin^3 \theta}{\cos \theta} = \sin \theta \cos \theta$$
 3

Questi	ion 9	(12 Marks)	Start a new booklet	Marks
a)	<i>ABCD</i> Explai	is a quadrilateral with n why sin($\alpha + \beta + \delta + \delta$	external angles α , β , δ , φ . φ) = 0.	2
b)	i)	Sketch the graph $y =$	$x \cos x$ for $0^\circ \le x \le 360^\circ$	1
	ii)	On the same number	plane sketch $y = \frac{1}{2}$	1
	iii)	How many solutions	are there for $\cos x = \frac{1}{2}$ in the domain $0^\circ \le x \le 360^\circ$	1
	iv)	For what values of k domain $0^{\circ} \le x \le 360^{\circ}$	will $\cos x = k$ have no solutions in the ??	1
c)	Solve	$4\sin^2\theta - 3 = 0 \text{ for }\theta,$	where $0^{\circ} \le \theta \le 360^{\circ}$.	3

d) Given that $x^2 + 4x + 5 \equiv (x+a)^2 + b^2$ find all possible values for *a* and *b*. 3

a) Find the value(s) of k for which the equation $x^2 + (k+3)x + 4k = 0$ has:

i)	one root equal to 1	1
ii)	roots which are equal but opposite in sign	2
iii)	equal roots	2
iv)	no real roots	1

b) In the diagram below, *ABCD is* a square. *X*, *Y* and *Z* are points on the sides *AB*, *BC* and *CD* respectively such that XB = YC = ZD.

DIAGRAM NOT TO SCALE

Copy the diagram into your writing booklet.

i)	Prove that	ΔBX	$Y \equiv \Delta C Y Z$			3	3
•••				.1		-	

- ii) Hence or otherwise prove that XY = YZ 1
 - iii) Deduce that $\angle XYZ = 90^{\circ}$

End of Paper

2

Solutions to Year 11 Mathematics 2011 Preliminary Examination

Question 1	Marking Criteria
$\frac{\sqrt[5]{32}}{\sqrt{32}} = 0.215$	2 - correct answer
a) $6.1+3.2 = 0.2$ (1 decimal place)	 correct calculator read out, but not rounded correctly
xy - 2yz + 4x - 8z	2 – correct solution
b) = $y(x-2z) + 4(x-2z)$ = $(y+4)(x-2z)$	 1 – attempt towards solution using some factorising
$\frac{x}{4} - \frac{3x+1}{6}$	3 – correct solution = $\frac{-3x-2}{12}$
$-\frac{3x}{6x+2}$	2 – solution with one error
c) $ = \frac{-12}{12} - \frac{12}{12} = \frac{-3x - 2}{12} = -\frac{3x + 2}{12} $	1 – expressing both fractions with a common denominator
d) 1.4×10^{-4}	1 – correct answer
e) $4 \times 18 = 72$ b = 72	1 – correct answer
f) $\frac{4m^2 - 9}{(2m+3)(2m-3)}$	1 – correct factorising
$\frac{1}{x} - 3 = \frac{1}{2x}$	2 – correct solution
2-6x=1	1 – correctly removing denominators
6' - 6x = -1	one mistake in otherwise correct
$x = \frac{1}{6}$	1 – if multiplying equation through with $2x^2$ and getting the solutions $x = 0$ $x = \frac{1}{6}$ but not realising
	for $x = 0$

Question 2	
a)	2 – correct solution
let $x = 0.4666666$	
10x = 4.666	1 – attempt at correct solution
<u> </u>	
9x = 4.2	
$r = \frac{4.2}{100}$	
$x = \frac{1}{9}$	
r = 42	
$x = \frac{1}{90}$	
7	
$x - \frac{1}{15}$	
b)	2 – correct solution
Let $x = \text{old water rate}$	1 attempt at correct colution or
1.08x = \$256	answer not rounded to pearest
$r = \frac{$256}{}$	dollar
$x = \frac{1.08}{1.08}$	
= \$237.07	
= \$237(nearest dollar)	
(c)	2 – correct solution
2-5r < 7	
	1 - solution with one error but
2-5x < 7 or $-2+5x < 7$	solution must not be over
$-5x < 5 \qquad 5x < 9$	simplified
$r > -1$ $r < \frac{9}{-1}$	
$x > -1$ $x < \frac{1}{5}$	
9	
$1 - 1 < x < \frac{1}{5}$	
d)	2 – correct solution
$1+\sqrt{3}$ $5+2\sqrt{3}$	
$\overline{5-2\sqrt{3}}^{\times}\overline{5+2\sqrt{3}}$	1 – multiplying with conjugate surd
$(1+\sqrt{3})(5+2\sqrt{3})$	
$=\frac{(1+\sqrt{3})(3+2\sqrt{3})}{25-12}$	
$\begin{bmatrix} 23-12\\ 5+2\sqrt{2}+5\sqrt{2}+6 \end{bmatrix}$	
$=\frac{3+2\sqrt{3}+3\sqrt{3}+6}{12}$	
$=\frac{11+7\sqrt{3}}{1}$	
13	

e)	2 – correct solution
$2\cos\beta = -\sqrt{3}$	
	1 – one angle correct or finding acute
$\cos\beta = -\frac{\sqrt{3}}{\sqrt{3}}$	angle of 30°
2	
$\beta = 180^{\circ} - 30^{\circ}, 180^{\circ} + 30^{\circ}$	
-150° 210°	
-130,210	
f)	2 – correct solution
$\tan 120^{\circ} = -\tan 60^{\circ}$	
$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	1 – solution with one error
$=-\sqrt{3}$ T C	
Question3	1
a) Let $y = 0$, then	1 – correct answer
2x - 2 = 0	
x = 1	
A = (1, 0)	
b) either show C lies on both lines by substitution or solve	2 – correct solution
simultaneously:	
	1 – solution with one error
(1) $2x - 3y - 2 = 0$	Or
	1 correct substitution
(2) $4x + 7y - 56 = 0$	
x = 7, y = 4	
A = (1,0) $C = (7,4)$	2 – correct solution
$1 - \sqrt{(7 - 1)^2 + (4 - 0)^2}$	1 – correct substitution into formula
	Or correct solution but surd not
$d = \sqrt{52}$	simplified
$d = 2\sqrt{13}$	
$\frac{u-2\sqrt{15}}{2}$	2 - correct angle to the nearest
$m_{AC} = \frac{2}{2}$	minute
3	initiate
d) $\tan \theta = \frac{2}{2}$	1 – correct gradient of AC found
3	
$\theta = 33.69006$	
$\theta = 33^{\circ}41'$	

e) $m = -\frac{2}{2}$ perpendicular gradient $= -\frac{3}{2}$	2 – Correct equation of straight line
$r_{AC} = \frac{3}{3}$, perpendicular gradient = 2	in any form
B = (0,8), using point gradient form	1 - correct perpendicular gradient
$y-8=-\frac{3}{2}(x-0)$	
$\frac{2}{2\pi}$	
2y - 10 = -3x	
5x + 2y - 16 = 0	2 – correct solution
$d = \frac{ 2 \times 0 - 3 \times 8 - 2 }{\sqrt{2}}$	
$\sqrt{2^2+3^2}$	1 – correct substitution into formula
$=\frac{\left -26\right }{\sqrt{2}}$	
√13	
f) $=\frac{26}{26} \times \frac{\sqrt{13}}{13}$	
$\sqrt{13}$ $\sqrt{13}$	
$26\sqrt{13}$	
$-\frac{13}{13}$	
$=2\sqrt{13}$	
$A = \frac{1}{2} \times 2\sqrt{13} \times 2\sqrt{13}$	1 – correct answer
$\frac{1}{2}$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$= 26 \text{ units}^2$	
Question 4	
	3 – correctly factorised and
x^3-8	simplified
$\overline{2x^2-3x-2}$	
$(x-2)(x^2+2x+4)$	2 – correctly factorised but not
$-\frac{(2x+1)(x-2)}{(2x+1)(x-2)}$	simplined
$=\frac{(x^2+2x+4)}{(x^2+2x+4)}$	1 – correctly factorised numerator
(2x+1)	or denominator
b) (i)	2 – correct proof with all reasons
In triangles $\triangle ABC$ and $\triangle ADE$	given
$\angle A$ is common	1 – correct proof but not all reasons
$\angle ABC = \angle ADE$ (corresponding angles on	given
parallel lines, DE//BC)	
$\therefore \Delta ABC$ is similar to ΔADE (equiangular)	
ii)	2 – correct solution with correct
$\frac{BC}{BC} = \frac{5}{2}$ (matching sides in similar triangles in	i reason
	1 – correct ratio given
6 9 the same ratio)	1 – correct ratio given
6 9 the same ratio) $BC = \frac{30}{2}$	1 – correct ratio given
$BC = \frac{30}{9}$	1 – correct ratio given

iii) DBCE is a trapezium:	1 – correct answer
$A = \frac{4m}{2} \left(6m + 3.3m \right)$	
$=18.6m^{2}$	
iv)	2 – correct sides in ratio
AB AC (internet on the set by	statement with correct reason
$\frac{1}{BD} = \frac{1}{CE}$ (intercepts on transversals cut by	
parallel lines in same ratio)	sides in ratio statement
$\therefore AB \times EC = AC \times BD$	
	2 – correct domain and range
c) Domain: all real $x, x \neq 0$ Range: all real $y, y \neq 1$	1 – correct domain or range
Question 5	
	1 - correct solution
$2520 = (n-2) \times 180$	
<i>n</i> = 16	
	1 – correct answer
ii) 2520÷16=157°30'	
(0)(1) $y = x^2 - 4x - 12$	1- correct expression
y = x = 4x = 12	
y = (x - 4x + 4) - 4 - 12	
$y = (x-2)^2 - 16$	
ii) V(2, -16)	1 – correct coordinates
iii) Let $y = 0$	2 – calculating both roots correctly
$(x-2)^2 - 16 = 0$	1 – attempt towards finding roots,
$(x-2)^2 = 16$	or factorising original equation
$(x-2) = \sqrt{16}$	y = (x-6)(x-2)
$x - 2 = \pm 4$	
x = 6 or $x = -2$	

v)	1 – correct bearing
$180^{\circ} - 115^{\circ} = 65^{\circ}$ (cointerior angles on parallel lines)	
$65^{\circ} - 46^{\circ} = 19^{\circ}$	
Bearing of A from B:	
$360^{\circ} - 19^{\circ} = 341^{\circ}$	
d)	2 – correct answer
g(2) = 5	1 - finding $q(2) = 5$ or applying the
f(5) = 25	function <i>f</i> correctly.
f(g(2)) = 25	, ,
Question 7	
$\begin{bmatrix} a \\ x \end{bmatrix}$	3 – correct solution
$4^{-9(2)} + 8 = 0$	
$4^x = (2^x)^2$	2 – correct substitution and finding
Let $2^x = u$	of u
$u^2 - 9u + 8 = 0$	1 correct substitution
(u-8)(u-1) = 0	
u = 8 or $u = 0$	
$2^x = 8$ $2^x = 1$	
x = 3 $x = 0$	
b)	1 – correct answer
i)	
f(-x) = g(-x) + g(x)	
=g(-x)+g(x)	
=g(x)+g(-x)	
=f(x)	
Hence <i>f(x)</i> is even.	
f(-x) = g(-x) - g(x)	1 – correct answer
ii) = g(-x) - g(x)	
$\neq f(x)$	
Hence this function is not even (However it is an odd	
function since $f(-x) = -f(x)$)	
C)i)ii)	i) $2 - $ correct graph showing all
у	intercents
	1 – graph not showing all intercepts
4-	or not to scale
2	
	II) 2 – line v=2 drawn correctly (dotted)
 -4 -2 2 4 6 8 10 	and correct shading
2	1 – line drawn correctly or somewhat
	correct shading from incorrect
4-	line, or line not dotted.

c)	2 – correct answer
$A = \frac{1}{2}ab\sin C$	1 – correct substitution into area
$22\sqrt{3} = \frac{1}{2}8x\sin 60^{\circ}$	Tormula
$22\sqrt{3} = 4x\frac{\sqrt{3}}{2}$	
$22\sqrt{3} = 2x\sqrt{3}$	
x = 11	
d) i) C= (1, -2)	1 – correct coordinates
ii) If $x + y = 4$ is a tangent to this circle, it must touch the	2 – correct solution
circle in one point only. So the radius must be equal to the	
perpendicular distance from the centre to the line $x + y = 4$	1 – attempt at solution, substituting into perpendicular distance formula
$r = \frac{ 1 \times 1 + 1 \times (-2) - 4 }{-1}$	
$\sqrt{1^2 + 1^2}$	
$=\frac{5}{\sqrt{2}}$	
$=\frac{5\sqrt{2}}{2}$	
2	
e)	
$\sin^3 \theta$	3 – correct proof
$LHS = \tan \theta - \frac{\sin^2 \theta}{\cos \theta}$	
$\sin\theta \sin^3\theta$	2 – substituting $\frac{\sin\theta}{\cos\theta} = \tan\theta$
$=\frac{1}{\cos\theta}-\frac{1}{\cos\theta}$	and factorising numerator
$=\frac{\sin\theta(1-\sin^2)}{\cos\theta}$	1 – substituting
	$\frac{\sin\theta}{\cos\theta} = \tan\theta$
$=\frac{\sin\theta\cos^2\theta}{1-\sin^2\theta}$	$\cos\theta$
$\cos \theta$	
$=\sin\theta\cos\theta$	
= RHS	
Question 9	
a)	
External angles of a polygon add up to 360°	2 – correct explanation
$\sin 360^\circ = 0$	1 – realising that external angles add to 360°

Comparing coefficients $2a = 4 \Rightarrow a = 2$	2 – solution with one error
$a^2 + b^2 = 5$ substituting $a = 2$	
$2^{2} + b^{2} = 5$	
$\frac{1}{2} + \frac{1}{2} = 1$	1 – realising that coefficient need to
$b = \pm 1$	be compared and making an attempt to do so.
$\therefore a = 2, b = \pm 1$	
Alternatively substitute	
x = 0 and $x = 1$	
into identity to give a set of equations that can be solved simultaneously	
Sindlancously.	
Question 10	
a)i) substitute $x = 1$	
1 + (k+3) + 4k = 0	1 – correct value for <i>k</i>
5k + 4 = 0	
$k = -\frac{4}{5}$	
ii) The sum of roots will equal 0	
$\alpha + \beta = 0$	2 – correct solution
-(k+3) = 0	1 – stating sum of roots equal to 0 OR
-k - 3 = 0	stating roots as $lpha$ and $-lpha$
$\kappa = -5$	
iii) equal roots means that the discriminant is equal to zero	2 – correct solution
$\Delta = (k+3)^2 - 4 \times 1 \times 4k$	
$(k+3)^2 - 4 \times 1 \times 4k = 0$	1 – correct substitution into
$k^{2} + 6k + 9 - 16k = 0$	uischinnant
$k^2 - 10k + 9 = 0$	
(k-9)(k-1) = 0	
$\therefore k = 1, k = 9$	

iii)	
	2 – correct conclusion drawn with all
Since $\triangle ZCY$ and $\triangle XBY$ are congruent all	reasons given
corresponding angles equal and	1 – correct conclusion but not fully
$\angle ZYC = \angle YXB$	explained.
$\angle YXB$ is complementary to $\angle XYB$ (right angled triangle)	
and hence	
$\angle ZYC$ is complementary to $\angle XYB$	
$\angle XYZ = 180^{\circ} - (\angle ZYC + \angle XYB)$ (straight angle)	
$\therefore \angle XYZ = 90^{\circ}$	

Communication Marks:

no communication marks

Q1

Q2	1 mark – part b – Set up of solution Let original = x 1.08x = \$256 etc.
Q3	1 mark – part b – setting out using LHS /RHS
Q4	1 mark – part b (iii) – for communicating the area of the shape they are finding or wrote out the formula of the shape they are finding.
Q5	1 mark – part a (ii) – showing correct formula: angle sum = $(n - 2) \times 180$ 1 mark – part b (iv) – stating that "the <i>x</i> -intercepts are –2 and 6"
Q6	1 mark – part c (ii) – stating that $\angle APB = \angle BPN - \angle APN$ 1 mark – part c (iii) – for showing the answer displayed on the calculator before rounding. 1 mark – part c (iv) – for showing " $\theta = \sin^{-1}$ " in their solution.
Q7	1 mark – part b – showing substitution of –x clearly 1 mark – part d – stating condition for positive definite
Q8	3 marks – part e – clarity of setting out proof with LHS and RHS
Q9	2 marks – part a – clear statement of exterior angle sum, followed by sin360 ⁰ =0 and hence $sin(\alpha + \beta + \delta + \gamma) = 0$
Q10	1 mark – part a – Stating condition for equal/no real roots 1 mark – part b – Giving reasons at each stage of proofs