Student Number:

_				

Name:

2012 Preliminary Course FINAL EXAMINATION Tuesday, September 11

Mathematics

General Instructions

- \circ Reading Time 5 minutes.
- \circ Working Time 3 hours.
- Write using a black or blue pen.
- Approved calculators may be used.
- All necessary working should be shown for every question.

Total marks (100)

Section I

10 marks

- \circ Attempt Questions 1 10
- Answer on the multiple choice answer sheet provided
- Allow approximately 15 minutes for this section

Section II

90 marks

- \circ Attempt Questions 11 16
- o Answer in the booklets provided
- Begin each question in a new booklet
- Allow approximately 2 hours 45 minutes for this section

- P2 provides reasoning to support conclusions which are appropriate to the context.
- **P3** performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities.
- **P4** chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques.
- **P5** understands the concept of a function and the relationship between a function and its graph.

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for your responses to Questions 1 - 10.

1.	What	is $\frac{3.23 \times 4.96^2}{3.45 + 1.2^2}$	correct to 3 significant figu	res?
	(A)	16.2	(B)	16.3
	(C)	24.4	(D)	24.5

2. Which of the following is the factorisation of $x^2 + x - 12$?

(A)	(x+3)(x-4)	(B)	(x-3)(x-4)

(C) (x+6)(x-2) (D) (x-3)(x+4)

3. Which calculation would be used to find the value of *x*?

- 4. What is the equation of the line that passes through the point (1, 3) and is parallel to the *x*-axis?
 - (A) x=1 (B) y=1 (C) x=3 (D) y=3

5. What are the values of *a* and *b* if $\frac{2\sqrt{2}}{2\sqrt{2}-3} = a - \sqrt{b}$? (A) -4 and 12 (B) -4 and 72 (C) -8 and 12 (D) -8 and 72 6. Which of the following are the solutions to the equation $2x^2 - 7x - 2 = 0$?

(A)
$$\frac{-7 \pm \sqrt{33}}{4}$$
 (B) $\frac{-7 \pm \sqrt{65}}{4}$
(C) $\frac{7 \pm \sqrt{33}}{4}$ (D) $\frac{7 \pm \sqrt{65}}{4}$

7. What is the domain for the function $y = \sqrt{7-x}$?

(A)
$$x \le 7$$
 (B) $0 \le x \le 7$

(C)
$$x \ge 0$$
 (D) All real x

8.

What is the value of *x* in the above diagram?

(A) 42 (B) 69 (C) 111 (D) 138

9. For what values of k is the expression $\frac{-x^2}{4} - x - k$ negative definite?

(A)
$$k < 1$$
 (B) $k > 1$

(C)
$$k < 4$$
 (D) $k > 4$

10. What is
$$\frac{\sin(180^\circ - \theta)}{\sin(90^\circ - \theta)}$$
 in its simplest form?

(C)
$$\sin\theta$$
 (D) $\tan\theta$

End of Section I

Section II

90 marks Attempt Questions 11-16 Allow about 2 hours 45 minutes for this section Begin each question in a new booklet All necessary working should be shown All questions are of equal value

Que	stion 11 (15 Marks)	Marks
(a)	Express 2.7 as a rational number in simplest form. q	2
(b)	Solve for <i>x</i> :	
	(i) $\frac{5}{x+3} = \frac{3}{x}$	2
	(ii) $ 2x+1 = 3x+2$	3
(c)	Show that the point (1, 4) lies on the line $2x+3y-14=0$.	1
(d)	Show that the three points $A(3,-1)$, $B(5, 5)$ and $C(2,-4)$ are collinear.	2
(e)	If $\sin \theta = \frac{7}{25}$ and $\cos \theta < 0$ find the exact value of $\cot \theta$.	2
(f)	The diagram shows a right angled triangle in which one of the sides, adjacent to the right angle, is 2 centimetres longer than the other.	3

Find the length of the shortest side of this triangle if its area is 7.5 cm^2 .

End of Question 11

(b) (c) Calculate, giving clear reasons, the size of $\angle CAD$.

Page 6 of 11

Question 12 (15 Marks) Start a new booklet

(a) An interval AB is formed by the points A(-3,5) and B(2,-3) on the number plane.

Draw a clear diagram.

(i)	Find the gradient of the interval <i>AB</i> .	1
(ii)	Find the length of the interval <i>AB</i> .	1
(iii)	Show that the equation of the line AB is $8x + 5y - 1 = 0$.	1
(iv)	Find the equation of the line through $C(5,8)$ perpendicular to AB.	2
(v)	Show that the perpendicular distance of <i>C</i> from the line <i>AB</i> is $\frac{79}{\sqrt{89}}$.	1
(vi)	Calculate the area of the triangle <i>ABC</i> .	1
(vii)	On your diagram, shade the region for which the inequalities $8x+5y-1 \ge 0$ and $y \le 0$ hold simultaneously.	2
(viii)	The points A , B and C are three vertices of the parallelogram $ACBD$. Find the co-ordinates of D .	1
Simpl	ify $\frac{1}{\csc^2\theta} + \frac{1}{\sec^2\theta} + \frac{1}{\cot^2\theta}$.	2
The li	diagram, $AB \parallel CD$ and $AB = AC$. nes AD and BC are perpendicular and $D = 54^{\circ}$.	

Marks

Question 13 (15 Marks) Start a new booklet

- Write down the exact value of $\tan 120^{\circ}$. (a)
- (b) Solve $4\cos^2 \alpha = 3$ for the domain $0^\circ \le \alpha \le 360^\circ$.
- (c) Triangle ABC is an equilateral triangle. The point P lies on the side AB, the point Q lies on the side BC and the point R lies on the side AC so that $\overline{AP} = BQ = CR.$

(i) Explain, with reasons, why AR = BP.

2 (ii) Prove $\triangle APR \equiv \triangle BQP$.

(d) (i) Solve simultaneously
$$y = 2x - 2$$
 and $y = x^2 - 1$. 2

- Explain the graphical significance of your answer to part (i). (ii) 1
- In the triangle PQR, S and T are points on the sides PR and QR respectively (e) such that $ST \parallel PQ$.

- Prove that the triangles *PQR* and *STR* are similar. (i)
- (ii) Find the value of *y*, giving reasons for your answer.

End of Question 13

Marks

1

3

2

2

Question 14 (15 Marks) Start a new booklet

(a)	The e	equation of a circle is given by $x^2 - 2x + y^2 + 12y - 12 = 0$.	
	(i)	Write the equation in the form $(x-h)^2 + (y-k)^2 = r^2$.	2
	(ii)	Hence or otherwise write down the co-ordinates of the centre of the circle.	1
	(iii)	Without solving, explain how you would determine the number of times a line cuts this circle.	2
(b)		ships leave a port, P , at the same time. Ship A travels at 12 km/h on a ng of 213°. Ship B travels south-east at a speed of 8 km/h.	
	(i)	Draw a diagram to illustrate the relative positions of the two ships after 3 hours.	1
	(ii)	Show that $\angle APB = 78^{\circ}$.	1
	(iii)	Show that the distance between the ships after 3 hours is 39km, to the nearest km.	2
	(iv)	Ship <i>A</i> received a distress call from Ship <i>B</i> whose engine had failed. On what bearing will Ship <i>A</i> need to sail in order to rescue Ship <i>B</i> ? Answer to the nearest degree.	3
(c)	Find	equations of two lines are $x+2y-6=0$ and $3x-2y-6=0$. the equation of the line that passes through the point of intersection of lines and the point $(1,-1)$.	3

Marks

End of Question 14

Question 15 (15 Marks) Start a new booklet

(a) A point *P* is at the foot of the hill which is inclined at 5° to the horizontal. The base *B*, of a tower *AB*, is situated 150 metres up the incline of the hill from *P*. From the top of the tower the angle of depression of the point *P* is 32° .

- (i) Copy the diagram and mark on it the size of $\angle PAB$ and $\angle APB$.
- (ii) Find the height of the tower, *AB*, correct to the nearest metre. 2
- (b) Consider the parabola with equation $y = x x^2$.
 - (i) Find the co-ordinates of the vertex.
 - (ii) Sketch the parabola showing all important features.
- (c) A function is defined as

$$f(x) = \begin{cases} x-5 & x \ge 0 \\ -2 & -3 < x < 0 \\ 2+x & x \le -3 \end{cases}$$

Find

- (i) f(-1) + f(-5) 1
- (ii) Sketch f(x) 3
- (d) Find the values of *A*, *B* and *C* such that

$$3x^{2} + 4x + 1 \equiv Ax(x-2) + B(x+1) + C$$

End of Question 15

2

2

2

Question 16 (15 Marks) Start a new booklet

(a) Solve the equation $4^x + 2^x - 6 = 0$.

(b) If α and β are the roots of the equation $3x^2 + 5x - 4 = 0$, find

- (i) $\alpha + \beta$
- (ii) αβ **1**
- (iii) $\alpha^2 + \beta^2$ 2
- (iv) $\frac{3}{\alpha} + \frac{3}{\beta}$ 2
- (c) Given the equation $(k+1)x^2 + (k+2)x + k = 0$ find the value of k if the equation has equal roots. 3
- (d) The roots of the equation $x^2 ax 2b = 0$ differ by 4. Show that $a^2 + 8b - 16 = 0$.

End of Examination Paper

Marks

3

1

Section I Answer Sheet

Student Number:

10 marks Attempt Questions 1-10

Allow about 15 minutes for this section

Use this multiple choice answer sheet for questions 1 - 10.

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample

2 + 4 = ? (A) 2 (B) 6 (C) 8 (D) 9 A \bigcirc B \bigcirc C \bigcirc D \bigcirc

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word *correct* and drawing an arrow as follows:

Completely fill the response oval representing the most correct answer.

1.	A 🔿	B 🔿	СО	D
2.	АO	BO	СО	DO
3.	АO	ВO	СО	DO
4.	АO	BO	СО	DO
5.	$A \bigcirc$	BO	СО	DO
6.	$A \bigcirc$	BO	СО	DO
7.	АO	BO	СО	DO
8.	$A \bigcirc$	ВO	СО	DO
9.	АO	BO	СО	DO
10.	$A \bigcirc$	ВO	СО	DO

Multiple Choice	
1 B	2 D
3 C	4 D
5 D	6 B
$2\sqrt{2}$ $2\sqrt{2} + 3$	$-b+\sqrt{b^2-4ac}$
$\frac{2\sqrt{2}}{2\sqrt{2}-3} \times \frac{2\sqrt{2}+3}{2\sqrt{2}+3}$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$2\sqrt{2} = 5 2\sqrt{2} + 5$	
$=\frac{2\sqrt{2}(2\sqrt{2}+3)}{(2\sqrt{2})^2-(3)^2}$	$=\frac{-(-7)\pm\sqrt{(-7)^2-4(2)(-2)}}{2(-2)}$
$=\frac{8+6\sqrt{2}}{-1}$	$7 \pm \sqrt{49 + 16}$
=	
$= -8 - \sqrt{72}$	$7 \pm \sqrt{65}$
- · · -	$= \frac{7 \pm \sqrt{49 + 16}}{-4} \\= \frac{7 \pm \sqrt{65}}{-4}$
	$=\frac{-7\pm\sqrt{65}}{4}$
	4
7 A	8 B
$7-x \ge 0$	
$x \le 7$	
$\begin{array}{c} 9 \\ A \\ B \\ B \\ B \\ A \\ B \\ B$	
For neg definite $b^2 - 4ac < 0$ and $a < 0$	
$b^2 - 4ac < 0$	
$(-1)^2 - 4(-\frac{1}{4})(-k) < 0$	
(-1) (
1 - k < 0	
k > 1	
10 D	
$\frac{\sin(180-\theta)}{\cos(180-\theta)}$	
$\sin(90-\theta)$	
$=\frac{\sin\theta}{2}$	
$-\frac{1}{\cos\theta}$	
$= \tan \theta$	

Solutions to Year 11 Mathematics 2012 Preliminary Examination

Question 11	Marking Criteria
a) Let $x = 2.77777(1)$ then $10x = 27.7777(2)$ (2)-(1): 9x = 25 $\therefore x = \frac{25}{9}$	2 - correct answer 1 – attempt at correct solution i.e correct x and $10x$
b) i) $\frac{5}{x+3} = \frac{3}{x}$ $5x = 3x+9$ $2x = 9$ $x = \frac{9}{2}$	2 – correct solution 1 – one error in working
b) ii) $ 2x+1 = 3x+2$ $2x+1 = \pm(3x+2)$ $2x+1 = 3x+2 \text{ or } 2x+1 = -3x-2$ $-x = 1 \text{or } 5x = -3$ $x = -1 \text{or } x = \frac{-3}{5}$	 3 - correct solution 2 - both values correct, no testing 1 -one value correct, no test
But $3x+2 \ge 0$ i.e $x \ge \frac{-2}{3}$ $\therefore x = \frac{-3}{5}$ is the only solution	
c) Let LHS = $2x + 3y - 14$ = $2(1) + 3(4) - 14$ = 0 = RHS \therefore (1, 4) lies on the line $2x + 3y - 14 = 0$	1 – correct method or use of substitution

d) Compare the gradients of 2 intervals: m_{AB} , m_{BC} or m_{AC} This solution looks at m_{AB} and m_{BC} $m_{AB} = \frac{51}{5 - 3}$ $m_{BC} = \frac{54}{5 - 2}$ $= \frac{6}{2}$ $= 3$ $= 3$ $= \frac{6}{2}$ $= 3$	 2 - correct answer showing 2 equal gradients 1 - incorrect but equal gradients <i>or</i> error in solution <i>or</i> other method with error
Since $m_{AB} = m_{BC}$, A, B and C are collinear	
e)	2 – correct answer
sin $\theta = \frac{7}{25}$ implies θ in 1st & 2nd quadrant $\cos \theta < 0$ implies θ in 2nd & 3rd quadrant $\therefore \theta$ lies in 2nd quadrant $\therefore \cot \theta < 0$ $7 \qquad 25 \qquad \theta$	$1 - \text{answer} + \frac{24}{7} \text{ or}$ correct negative sign for 2 nd quad
x	
By Pythagoras	
$25^2 = x^2 + 7^2$	
$625 = x^2 + 49$	
$x^2 = 576$	
x = 24	
$\therefore \cot \theta = -\frac{24}{7}$	
f)	3 – correct solution plus reason
$A = \frac{1}{2}bh$	$q \neq -5$
$\frac{q}{2}(q+2) = 7.5$	2 – correct values without consideration of the validity of the answer
q(q+2) = 15	1 – correct initial equation
$q^2 + 2q - 15 = 0$	
(q-3)(q+5) = 0	
$\therefore q = 3, -5$	
Since q>0, the shortest side is 3cm.	
Communication: <i>1 mark each</i> (b) (ii) $3x+2 \ge 0$	
(b) (ii) $3x + 2 \ge 0$ (c) clear reasoning eg LHS ==RHS	
(d) efficiency of soln eg 2 gradients only	
 (e) stating 2nd quadrant (f) clear reasoning for one solution 	

(iv)		2 – correct solution
	gradient line perpendicular to AB	
	$m_1 \times m_2 = -1$	1- correct with incorrect gradient
	$m_{AB} = \frac{-8}{5}$	
	\therefore gradient line perpendicular to $AB = \frac{5}{8}$	
	Equat ⁿ required with $m = \frac{5}{8}$ and point (5,8)	
	$y - y_1 = m(x - x_1)$	
	$y - 8 = \frac{5}{8}(x - 5)$	
	8y - 64 = 5x - 25	
	5x - 8y + 39 = 0	
	OR	
	Equat ⁿ of a line perpendicular to $Ax + By + c = 0$	
	has form $Bx - Ay + k = 0$	
	$\therefore \operatorname{Re} q'd \text{ equation is } 5x - 8y + k = 0$	
	subs $(5,8)$: $5(5)-8(8)+k=0$	
	$\therefore k = 39$	
	Req'd equation is $5x - 8y + 39 = 0$	
(v)		1 – correct substitution and answer
	Perp distance = $\left \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right $	
	$= \left \frac{5(8) + 8(5) - 1}{\sqrt{5^2 + 8^2}} \right $	
	$=\left \frac{40+40-1}{\sqrt{25+64}}\right $	
	$=\frac{79}{\sqrt{89}}$	
	¥07	
(vi)	$Area = \frac{1}{2}bh$	1 – correct solution
	$=\frac{1}{2}\sqrt{89}\times\frac{79}{\sqrt{89}}$	
	$=\frac{79}{2} \text{ units}^2$	
	2	

Question 13	
(a)	1 – correct solution
$\tan 120^\circ = -\tan 60^\circ$	
$=-\sqrt{3}$	
v 5	
(b)	3 – correct solution
$4\cos^2\alpha = 3$	
$\cos \alpha = \pm \frac{\sqrt{3}}{2}$	2 - no \pm mentioned but correct answers
2	answers
$\therefore \alpha$ in all quadrants	$1 - no \pm$ mentioned incorrect related
α in 1 st quadrant = 30°	angle but angles correct using
$\therefore \alpha = 30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}$	incorrect related angle
(c) (i) $AB = AC = BC$ (equal sides in equil $\triangle ABC$)	2 – correct solution with reasoning
$AB = RC = BC$ (equal sides in equal ΔABC) AP = RC = BQ (given)	1 - correct working with partial or no
AR = AC - RC $AR = AC - RC$	reasoning
$A\mathbf{A} = A\mathbf{C} - \mathbf{A}\mathbf{C}$ $= AB - AP$	
= AB - AI = BP	
= Dr $\therefore AR = BP$	
AK = BP	
(c) (ii)	2 – correct proof with reasoning
In $\triangle APR$ and $\triangle BQP$	1 missing on incompating
$AP = BQ \ (given)$	1 – missing or incorrect reasons
$AR = BP \ (proven \ above)$	
$\angle PAR = \angle QBP = 60^{\circ}$ (vertex angles of	
equilateral $\triangle ABC$)	
$\therefore \triangle APR \equiv \triangle BQP (SAS)$	
(d) (i)	2 – correct solution
y = 2x - 2(1)	
$y = x^2 - 1$ (2)	1 – most working correct or not
Subs (1) in (2) $x^{2} = 1 - 2x - 2$	finding the value of <i>y</i> .
$x^2 - 1 = 2x - 2$	
$x^2 - 2x + 1 = 0$	
$(x-1)^2 = 0$	
$\therefore x = 1$	
(ii) The line is a tangent to the parabola	1 – correct answer
	2 – correct proof with reasoning
(e) (i) In $\triangle PQR$ and $\triangle STR$	1 montarily montafield
$\angle R$ is common	1 – proof with most of the reasoning correct.
$\angle RPQ = \angle RST$ (equal corresponding angles on parallel lines $PQ \stackrel{ }{=} ST$)	concer.
parallel lines, $PQ \mid ST$ $\angle PQR = \angle STR$ (equal corresponding angles on	
$\sum PQR = \sum STR$ (equal corresponding angles on parallel lines, $PQ ST$)	
$\therefore \Delta PQR \mid\mid\mid \Delta STR $ (equiangular)	

(ii) Since $\triangle PQR$ $\triangle STR$, corr sides are in ratio	2 – correct solution with reasoning
$\frac{y}{y+2} = \frac{7}{11}$ $11y = 7y + 14$ $4y = 14$ $y = 3.5$ <i>OR</i> (ratio of intecepts made by parallel lines are equal) $\frac{y}{2} = \frac{7}{4}$ $y = 3.5$	1 – correct answer with no reasonng
Communication: 1 mark each (b) diagram to show domain (c) (i) & (c) (ii) clear reasoning	 (d) (ii) clear explanation (e) (i) efficiency of solution (e) (ii) efficiency of solution/ratio statement

 2- correct solution showing completing the square 1- progress towards completing the square 1- correct solution 2 - correct explanation which ncludes how you got discriminant or perp dist of line to centre of circle 1 - explanation that was not clear
 progress towards completing the equare correct solution correct explanation which ncludes how you got discriminant or berp dist of line to centre of circle
aquare - correct solution 2 – correct explanation which ncludes how you got discriminant or berp dist of line to centre of circle
aquare - correct solution 2 – correct explanation which ncludes how you got discriminant or berp dist of line to centre of circle
2 – correct explanation which ncludes how you got discriminant or berp dist of line to centre of circle
ncludes how you got discriminant or berp dist of line to centre of circle
– explanation that was not clear
l – diagram clearly indicating the ength and bearing of each point
eı

(ii) $\angle APB = 213^{\circ} - 135^{\circ}$	1- correct show
$=78^{\circ}$	Alternate shows available
(iii) $AB^2 = 36^2 + 24^2 - 2(36)(24)\cos 78^0$	2 – correct show which includes calculator readout
=1512.728598	1 – correct substitution into cosine
AB = 38.8938	rule
= 39 km (to nearest km)	
(iv)	3- correct 3 digit bearing
$\frac{\sin A}{24} = \frac{\sin 78}{39}$	2- correct angle and attempt to use it
	to get bearing
$\sin A = \frac{24\sin 78}{39}$	1- correct attempt at sine rule
$\angle A = 37^{\circ}0'31.5''$	1
$Bearing = 33^{\circ} + 37^{\circ}$	
$= 070^{\circ}$	
c) General form:	3- correct solution
x + 2y - 6 + k(3x - 2y - 6) = 0	2- correct attempt at solution
Passes through $(1, -1)$	-
$\therefore 1 + 2(-1) - 6 + k(3(1) - 2(-1) - 6) = 0$	1- correct attempt at using K or
-7 - k = 0	finding point of intersection of the 2 lines
k = -7	lines
$\therefore x + 2y - 6 - 7(3x - 2y - 6) = 0$	
x + 2y - 6 - 21x + 14y + 42 = 0	
-20x + 16y + 36 = 0	
5x - 4y - 9 = 0	
Or Point of intersection of lines (3, 1.5)	
Gradient 5/4	
Communication: 1 mark each <u>except</u> 1(a) (iii)- 2 marks	
(a) (iii) clear reasoning	
(b) (i) diagram (b) (ii) cher reasoning	
(b) (ii) clear reasoning	

Question 16	
(a)	
$4^x + 2^x - 6 = 0$	3 - correct solution including no
$(2^x)^2 + 2^x - 6 = 0$	solution for $2^x = -3$ 2 – two correct possible solutions
Let $m = 2^x$	1 - correct values of m
$m^2 + 2m - 6 = 0$	
(m+3)(m-2) = 0	
m = -3, 2	
<i>ie</i> $2^x = -3, 2$	
but $2^x > 0$ for all x	
$\therefore 2^x = 2$	
$\therefore x = 1$	
(b) (i)	1 compations
$\alpha + \beta = \frac{-b}{c}$	1 – correct answer
<i>a</i> -5	
$\alpha + \beta = \frac{-b}{a}$ $= \frac{-5}{3}$	
(ii)	1 – correct answer
$\alpha\beta = \frac{-4}{3}$	
iii) $\alpha^2 + \beta^2$	2 – correct solution or carried errors
$ \begin{array}{l} \alpha + \beta \\ = (\alpha + \beta)^2 - 2\alpha\beta \end{array} $	from parts (i) or (ii)
	1 – one error
$=\frac{25}{9}-2(\frac{-4}{3})$	
49	
$=\frac{1}{9}$	
(iv)	
$\frac{3}{\alpha} + \frac{3}{\beta}$	2 – correct solution or carried errors from parts (i) or (ii)
	1 - one error
$=\frac{3\beta+3\alpha}{\alpha\beta}$	
$3(\beta + \alpha)$	
$=\frac{\alpha(\beta+\alpha)}{\alpha\beta}$	
$= \frac{3(\beta + \alpha)}{\alpha\beta}$ $= -5 \div \frac{-4}{3}$	
$=\frac{15}{1}$	
4	

(c) $\Delta = b^{2} - 4ac = 0$ $(k+2)^{2} - 4(k+1)k = 0$ $k^{2} + 4k + 4 - 4k^{2} - 4k = 0$ $-3k^{2} + 4 = 0$ $k^{2} = \frac{4}{3}$ $k = \pm \frac{2}{\sqrt{3}}$	3 – correct solution and answers 2 – one correct solution or $3k^2 = 4$ 1 – correct discriminant = 0
(d) Let the roots be α and $\alpha + 4$ then sum: $\alpha + \alpha + 4 = a$ $2\alpha + 4 = a$ $\alpha = \frac{a-4}{2}$ $\alpha = \frac{a}{2} - 2$ (1) product: $\alpha(\alpha + 4) = -2b$ (2) subs (1) in (2): $(\frac{a}{2} - 2)(\frac{a}{2} - 2 + 4) = -2b$ $(\frac{a}{2} - 2)(\frac{a}{2} + 2) = -2b$ $\frac{a^2}{4} - 4 = -2b$ $a^2 - 16 = -8b$ $a^2 - 16 = -8b$ $a^2 + 8b - 16 = 0$ Communication: <i>I mark each</i> (a) appropriate substitution (b) (iii) use of identity (c) stated understanding of equal roots (d) efficiency of solution	 3 - correct solution and answers 2 - correct substitution for α 1 - correct equations for sum and product