(a) Evaluate
$$\sqrt[3]{\frac{4.37+0.8}{1.2-0.9}}$$
, correct to 2 decimal places. 1

(b) Express
$$(4x)^{-\frac{1}{2}}$$
 without a fractional index. 1

(c) Simplify completely:

(i)
$$(x + y) - (x - y)$$
 1

(ii)
$$\frac{m-1}{3} - \frac{2m+5}{2}$$
 2

(iii)
$$3\sqrt{54} + 2\sqrt{24}$$
 2

(d) Write
$$0.03\frac{1}{4}$$
 as a rational number in the form of $\frac{p}{q}$, where **2** p and q are integers.

(e) Express
$$\frac{3\sqrt{5}}{\sqrt{5}-1}$$
 with a rational denominator. 2

(f) Factorise completely
$$8a^3 - 27$$
 1

Question 2(12 Marks)Start this question on a new page.Marks

(a) Show that
$$f(x) = -\frac{4}{x}$$
 is an odd function 2

(b) Solve
$$|1 + 5x| \ge 4$$
 and graph your solution on the number line **3**

(c) State the domain and range of the function
$$y = -\sqrt{9 - x^2}$$
 2

y > -3, $y - x - 1 \le 0$ and $y \le -x + 1$

hold simultaneously. Points of intersection are not required.

(e) Find the value(s) of x for which f(x) = 0 when $f(x) = x^2 - 3x - 1$ 2 Give your answer in exact form.

Question 3(12 Marks)Start this question on a new page.Marks

NOT TO SCALE

In the diagram, A is the point (0, 4) and B is (-3, 0). CD is perpendicular to AB.

(a)	Find the length of <i>AB</i> .	1
(b)	If $AB = BC$, find the coordinates of <i>C</i> .	1
(c)	If $CD \perp AB$, show that the equation of CD is $3x + 4y = 6$.	3
(d)	<i>CD</i> intersects the <i>y</i> -axis in <i>P</i> . Show that $CP = \frac{5}{2}$.	2
(e)	Prove that $\triangle ADP \equiv \triangle COP$.	3
(f)	Calculate the area of the quadrilateral DPOB.	2

Question 4 (12 Marks) Start this question on a new page. Marks

(a) Given
$$\cos \theta = \frac{12}{13}$$
, find the exact value of $\tan \theta$ if θ 2
is an acute angle.

(b) Solve for
$$0^0 \le \theta \le 360^0$$
 if $2\sin \theta + 1 = 0$ 2

(c) Simplify
$$\frac{\sin x}{1 + \cos x} + \frac{1 + \cos x}{\sin x}$$
 3

(d) At 14:00 hours, a ship is at point A, which is due south of a small island, *I*. The ship is travelling on a bearing of 020° at 15 km/h. After 1 hour and 40 minutes, it is at a point B, where it has a bearing of 135° from the island.

(i)	Draw a neat diagram indicating all the relevant information.	1
(ii)	Calculate the distance from <i>A</i> to <i>I</i> to 2 significant figures.	2
(iii)	Find the time, to the nearest minute, at which the island will be	
	due west of the ship.	2

Question 5 (8 Marks) Start this

Start this question on a new page.

Marks

In the diagram above, $PQ \square RS$, PR = PS, $\angle QPS = 56^{\circ}$ and $PT \perp RQ$

- (i) Find $\angle PRS$. No reasoning is required. 1
- (ii) Show that $\angle PRQ = 22^{\circ}$ 2

(b) For a regular octagon,

- find(i)the sum of the interior angles1
 - (ii) the size of each interior angle. 1
- (c) In the figure below, prove $\Delta XAB \parallel \Delta XDC$.

3

The figure is not to scale.

1

Question 6(16 Marks)Start this question on a new page.Marks

(a) Differentiate

(i)
$$y = 2x^3 + 5x - \frac{1}{x}$$
 2

(ii)
$$y = (1-4x^5)^3$$
 2

(iii)
$$y = 4x\sqrt{x}$$
 2

(iv)
$$y = \frac{6x+5}{1-2x}$$
 2

(b) Find the value of
$$\lim_{x \to \infty} \frac{4x^2 + x}{1 + 2x - x^2}$$
 2

(c) If
$$V = 4t^2 - 12t + 2$$
,
find (i) $\frac{dv}{dt}$ 1

(ii) the value of t when
$$\frac{dv}{dt} = 0$$
 1

(d) Find the equation of the tangent to the curve $y = \frac{2}{x+1}$ 3 at the point where x = 3.

(e) Copy this graph onto your paper. On the same set of axes, draw a sketch of the gradient function.

Question 7(8 Marks)Start this question on a new page.Marks

(a) For the quadratic polynomial $y = -2x^2 + 7x + 4$,

find	(i)	the roots by factorisation	2
	(ii)	the axis of symmetry	1
	(iii)	the vertex	1
	(iv)	Hence or otherwise, sketch the curve $y = -2x^2 + 7x + 4$, showing all the details above and the y intercept.	1

(b) Find the value(s) of k such that $x^2 + (k+1)x + 4 = 0$ 3 has no real roots.

END OF PAPER

Total: 8D MARKS
YR II MATHEMATICS RELIMINARY FINAL 2008 - Solutions

$$\frac{OUESTIDD I}{(12 \text{ MARKS})}$$
 (12 MARKS)
(a) 2.58
(a) 2.58
(b) $(\frac{1}{4}x)^{\frac{1}{2}} = \frac{1}{\frac{1}{4}x}$
 $= \frac{1}{21x}$ I
 $= \frac{1}{21x}$ I
(c) $(1) x+y-2+y$
 $= 2y$ I
(b) $1+5x + 2y$ I
 $(\frac{1}{2}) \frac{2(n-1)-3(2n+5)}{(1-5x)}$
 $= \frac{2m-2-6m-15}{(1-5x)}$ I
(ii) $3f_{1}T_{1} + 2f_{1}T_{1}^{2}$
 $= \frac{2m-2-6m-15}{(1-5x)}$ I
(d) $x = 0.03444...$
 $12x = 0.31$ $2x = 0.31$ I
 $x = 31$
 $x = 31$
 $x = 31$
 $(2) (2a-3)(4a^{2}+6a+7)$ I
(e) $x = 3 \pm \sqrt{9-41,1-1}$ I
 $(2) (2a-3)(4a^{2}+6a+7)$ I
 $(2$

(a) $AB = \sqrt{3^2 + 4^2}$ = 5 units 1

- (c) $grad AB = \frac{4}{3}$ $grad DC = -\frac{3}{4}$
- Eqn CD: $\frac{7}{x-2} = -\frac{3}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

(d) coords of
$$P$$
:
Let $z = 0$, $4\gamma = 6$
 $\gamma = \frac{3}{2}$
 $\therefore P(0, \frac{3}{2})$

$$cp = \sqrt{\frac{2^{2} + \left(\frac{3}{2}\right)^{2}}{\frac{3}{4} + \frac{9}{4}}}$$
$$= \sqrt{\frac{25}{4}} \frac{1}{\frac{5}{4}} \frac{1}{\frac{5}{4}}$$

(e)
$$\angle DPA = \angle OPC (vert. op \ Ls =) \\ \angle ADP = \angle COP (given - both 90) \\ AP = OP = 3/2 units \\ \downarrow$$

$$\therefore \triangle ADP = \triangle coP (AAS)$$

(f) Join B to P

$$\therefore \ \Delta BDP = \Delta BOP (RHS)$$

Area of Quod DPOB
=
$$2 \times \triangle POB$$

= $2 \times \frac{1}{2} \times 3 \times \frac{3}{2}$

•

d) when
$$x = 3$$
, $y = \frac{1}{2}$
... Point is $(3, \frac{1}{2})$
 $grad = \frac{(x+1) \cdot 0 - 2 \cdot 1}{(x+1)^2}$
 $= -\frac{2}{(x+1)^2}$
 $1 = -\frac{2}{(x+1)^2}$
 $1 = -\frac{2}{16} = -\frac{1}{8}$
Eq. of tag: $grad = -\frac{1}{8}, (3, \frac{1}{2})$
 $\frac{y - \frac{1}{2}}{x - 3} = -\frac{1}{8}$
 $8y - 4 = -x + 3$
 $x + 8y - 7 = 0$
 $1 = -\frac{1}{8}$
 $y - 4 = -x + 3$
 $x + 8y - 7 = 0$
 $1 = -\frac{1}{8}$
 $y - 4 = -\frac{1}{8}$
 $1 =$

 $(b) \text{ No real roots } \Delta LO$ $(k+1)^{2} - 4.1.4 LO \qquad 1$ $k^{2}+2k+1 - 16 LO$ $k^{2} + 2k - 15 LO \qquad 1$ (k+5)(k-3) LO (k+5)(k-3) LO $\frac{1}{1}$ $\frac{1}{1}$

