Question $1 \quad$ (12 marks)
Marks
(a) Evaluate $\sqrt[3]{\frac{4.37+0.8}{1.2-0.9}}$, correct to 2 decimal places.
(b) Express $(4 x)^{-\frac{1}{2}}$ without a fractional index.
(c) Simplify completely:
(i) $(x+y)-(x-y)$

1
(ii) $\frac{m-1}{3}-\frac{2 m+5}{2}$

2
(iii) $3 \sqrt{54}+2 \sqrt{24}$

2
(d) Write 0.034 as a rational number in the form of $\frac{p}{q}$, where p and q are integers.
(e) Express $\frac{3 \sqrt{5}}{\sqrt{5}-1}$ with a rational denominator.
(f) Factorise completely $8 a^{3}-27$

Question 2 (12 Marks) Start this question on a new page.
(a) Show that $f(x)=-\frac{4}{x}$ is an odd function
(b) Solve $|1+5 x| \geq 4$ and graph your solution on the number line
(c) State the domain and range of the function $y=-\sqrt{9-x^{2}}$
(d) Sketch the region where

$$
y>-3, \quad y-x-1 \leq 0 \text { and } y \leq-x+1
$$

hold simultaneously. Points of intersection are not required.
(e) Find the value(s) of x for which $f(x)=0$ when $f(x)=x^{2}-3 x-1$ 2 Give your answer in exact form.

Question 3 (12 Marks) Start this question on a new page.
Marks

NOT TO SCALE

In the diagram, A is the point $(0,4)$ and B is $(-3,0) . C D$ is perpendicular to $A B$.
(a) Find the length of $A B$.

1
(b) If $A B=B C$, find the coordinates of C.
(c) If $C D \perp A B$, show that the equation of $C D$ is $3 x+4 y=6$.

3
(d) $C D$ intersects the y-axis in P. Show that $C P=\frac{5}{2}$.
(e) Prove that $\triangle A D P \equiv \triangle C O P$.
(f) Calculate the area of the quadrilateral $D P O B$. 2

Question 4 (12 Marks) Start this question on a new page.
(a) Given $\cos \theta=\frac{12}{13}$, find the exact value of $\tan \theta$ if θ is an acute angle.
(b) Solve for $0^{0} \leq \theta \leq 360^{\circ}$ if $2 \sin \theta+1=0$
(c) Simplify $\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}$
(d) At 14:00 hours, a ship is at point A, which is due south of a small island, I. The ship is travelling on a bearing of 020° at $15 \mathrm{~km} / \mathrm{h}$. After 1 hour and 40 minutes, it is at a point B, where it has a bearing of 135° from the island.
(i) Draw a neat diagram indicating all the relevant information.
(ii) Calculate the distance from A to I to 2 significant figures.
(iii) Find the time, to the nearest minute, at which the island will be due west of the ship.

Question 5 (8 Marks) Start this question on a new page.

Marks
(a)

In the diagram above, $P Q \square R S, ~ P R=P S$,
$\angle Q P S=56^{\circ}$ and $P T \perp R Q$
(i) Find $\angle P R S$. No reasoning is required.
(ii) Show that $\angle P R Q=22^{\circ}$ 2
(b) For a regular octagon,
find (i) the sum of the interior angles $\mathbf{1}$
(ii) the size of each interior angle.

1
(c) In the figure below, prove $\triangle X A B\|\| X D C$.

The figure is not to scale.

Question 6 (16 Marks) Start this question on a new page.
(a) Differentiate
(i) $y=2 x^{3}+5 x-\frac{1}{x}$
(ii) $y=\left(1-4 x^{5}\right)^{3}$
(iii) $y=4 x \sqrt{x}$

2
(iv) $y=\frac{6 x+5}{1-2 x}$

2
(b) Find the value of $\lim _{x \rightarrow \infty} \frac{4 x^{2}+x}{1+2 x-x^{2}}$
(c) If $V=4 t^{2}-12 t+2$,
find (i) $\frac{d v}{d t}$
1
(ii) the value of t when $\frac{d v}{d t}=0$
(d) Find the equation of the tangent to the curve $y=\frac{2}{x+1}$ at the point where $x=3$.
(e) Copy this graph onto your paper. On the same set of axes, draw a sketch of the gradient function.

Question 7 (8 Marks) Start this question on a new page.

(a) For the quadratic polynomial $y=-2 x^{2}+7 x+4$,
find (i) the roots by factorisation 2
(ii) the axis of symmetry
(iii) the vertex
(iv) Hence or otherwise, sketch the curve

1

1

1
$y=-2 x^{2}+7 x+4$, showing all the details above and the y intercept.
(b) Find the value(s) of k such that $x^{2}+(k+1) x+4=0$ 3 has no real roots.
yR 11 matiematics Preliminart final 2008 - Solutions

QUESTION 1 (12 mARKS)
(a) 2.58
(b)

$$
\begin{aligned}
(4 x)^{-\frac{1}{2}} & =\frac{1}{\sqrt{4 x}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \text { (i) } x+y-x+y \\
& =2 y
\end{aligned}
$$

(ii)

$$
\text { i) } \begin{aligned}
& \frac{2(m-1)-3(2 m+5)}{6} \\
= & \frac{2 m-2-6 m-15}{6} \\
= & \frac{-4 m-17}{6}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& 3 \sqrt{9 \sqrt{6}}+2 \sqrt{4} \sqrt{6} \\
= & 9 \sqrt{6}+4 \sqrt{6} \\
= & 13 \sqrt{6}
\end{aligned}
$$

(d)

$$
\begin{aligned}
x & =0.0344 \ldots \\
10 x & =0.3444 \ldots \\
9 x & =0.31 \quad x=\frac{0.31}{9} \\
x & =\frac{31}{900}
\end{aligned}
$$

(e) $(2 x-3)\left(4 a^{2}+6 a+9\right)$

QUESTIOT 2 (12 MARKS)
(a) $f(-a)=-\frac{4}{2}=\frac{4}{2}$

$$
\begin{equation*}
-f(a)=-\frac{4}{2}=\frac{4}{2} \tag{1}
\end{equation*}
$$

Since $f(-a)=-f(a)$, then function is ODD
(b)

$$
\begin{array}{rlrlrl}
1+5 x & \geqslant 4 & \text { or } & -(1+5 x) & \geqslant 4 \\
5 x & \geqslant 3 & & -1-5 x & \geqslant 4 \\
x & \geqslant \frac{3}{5} & & & -5 x & \geqslant 5 \\
& 1 & x & \leqslant-1
\end{array}
$$

(c)

(d)

(e)

$$
\begin{aligned}
x & =\frac{3 \pm \sqrt{9-4.1 .-1}}{2} \quad 1 \\
& =\frac{3+\sqrt{13}}{2} \text { or } \frac{3-\sqrt{13}}{2} 1
\end{aligned}
$$

QUESTION 3 (12 MARKS)

(a)

$$
\begin{aligned}
A B & =\sqrt{3^{2}+4^{2}} \\
& =5 \text { units }
\end{aligned}
$$

(b) $c(2,0)$
(c) $\operatorname{grad} A B=\frac{4}{3}$
grad $D C=-\frac{3}{4}$

Eqn $C D$:

$$
\begin{aligned}
& -\frac{1}{x-2}=\frac{-3}{4} \\
& 4 y=-3 x+6 \\
& 3 x+4 y=6
\end{aligned}
$$

(d) cooids of P :

Let $x=0,4 y=6$

$$
\begin{aligned}
& y=3 / 2 \\
& \therefore \quad P(0,3 / 2) \\
& c p=\sqrt{2^{2}+\left(\frac{3}{2}\right)^{2}} \\
& =\sqrt{4+\frac{9}{4}} \\
& =\sqrt{\frac{25}{4}} \\
& =5 / 2 \text { units }
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \angle D P A=\angle O P C(\text { vert.OP } \angle s=), \\
& \angle A D P=\angle C O P\left(\text { given }-60 \text { th } 90^{\circ}\right) \\
& A P=O P=3 / 2 \text { units }
\end{aligned}
$$

$$
\therefore \triangle A D P \equiv \triangle \operatorname{CoP} \text { (AAS) }
$$

(f) $J \sin B$ to P

$$
\therefore \quad \triangle B D P \equiv \triangle B D P(\text { RHS })
$$

Area of Qued DPOB

$$
\begin{aligned}
& =2 \times \Delta P \supset B \\
& =2 \times \frac{1}{2} \times 3 \times \frac{3}{2}
\end{aligned}
$$

$=4 \frac{1}{2}$ squore units

QUESTION 4 (12 mARKS)
(a)

Using prthagoiais theorem

$$
\begin{aligned}
& h=\sqrt{13^{2}-12^{2}} \\
&=\sqrt{25}=5 \text { units } \\
& \therefore \quad \tan \theta=\frac{5}{12}
\end{aligned}
$$

(b) $2 \sin \theta=-1$

$$
\sin \theta=-\frac{1}{2}
$$

basic angle: 30°
\therefore Sin te in Sud and:

$$
\begin{equation*}
\theta=20^{\circ} \tag{1}
\end{equation*}
$$

sin te in $4^{\text {th }}$ and:

$$
\theta=330^{\circ}
$$

$$
\text { (c) } \begin{aligned}
& \frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x} \\
= & \frac{\sin ^{2} x+(1+\cos x)^{2}}{\sin x(1+\cos x)} \\
= & \frac{\sin ^{2} x+1+2 \cos x+\cos ^{2} x}{\sin x(1+\cos x)} \\
= & \frac{2+2 \cos x}{\sin x(1+\cos x)} \\
= & \frac{2(1+\cos x)}{\sin x(1+\cos x)} \\
= & \frac{2}{\sin x} \\
= & 2 \operatorname{cosec} x
\end{aligned}
$$

(d)

(ii)

$$
\begin{aligned}
\frac{I A}{\sin 115^{\circ}} & =\frac{25}{\sin 45^{\circ}} \\
I A & =\frac{25}{\sin 45^{\circ}} \times \sin 115^{\circ} \\
& =32.0428 \ldots .1 \\
& =32 \mathrm{~km} \text { (to } 2 \text { sig. fig) }
\end{aligned}
$$

(iii) Find $A C$ to find time from A to c

$$
\begin{aligned}
& \cos 20^{\circ}=\frac{I A}{A C} \\
& A C=\frac{32}{\cos 20^{\circ}}
\end{aligned}=34.1 \mathrm{~km} .
$$

\therefore Leaving at 14.00 h , ship will be east of island at. $14 \mathrm{~h}+2 \mathrm{n} 16 \mathrm{~min}$

$$
=16 \mathrm{~h} 16 \mathrm{~min}
$$

QUESTION 5 (8 MARKS)
(a)

(i) $\angle P R S=56^{\circ}$
(ii) $\angle R P S=68^{\circ}$ (\angle Sum of isos. $\left.\triangle P_{R S}\right) \quad 1$
$\therefore \angle P R Q=22^{\circ}(\angle$ Sum of $\triangle P R T) \quad 1$
(b)
(i) Angle sum $=6 \times 180^{\circ}=1080^{\circ} \quad 1$
(ii) Size of interior $L=\frac{1080^{\circ}}{8}=135^{\circ} \quad 1$
(c)

$\angle X$ is the common angle

$$
\begin{aligned}
& \frac{x B}{x A}=\frac{6}{8}=\frac{3}{4} \\
& \frac{x C}{x D}=\frac{18}{24}=\frac{3}{4}
\end{aligned}
$$

$\therefore \triangle \times A B$ III $\triangle \times D C$ because the corresponding sides 1 around the common angle are in the same ratio.

Question 6 (16 mARKS)
(a) (i)

$$
\begin{aligned}
\frac{d y}{d x} & =6 x^{2}+5+x^{-2} \\
& =6 x^{2}+5+\frac{1}{x^{2}}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d y}{d x} & =3\left(1-4 x^{5}\right)^{2} \cdot-20 x^{4} \\
& =-60 x^{4}\left(1-4 x^{5}\right)^{2}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\frac{d y}{d x} & =4 x \cdot \frac{1}{2} x^{-\frac{1}{2}}+\sqrt{x} \cdot 4 \\
& =\frac{2 x}{\sqrt{x}}+4 \sqrt{x} \\
& =2 \sqrt{x}+4 \sqrt{x} \\
& =6 \sqrt{x}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(1-2 x) \cdot 6-(6 x+5) \cdot-2}{(1-2 x)^{2}} \\
& =\frac{6-12 x+12 x+10}{(1-2 x)^{2}} \\
& =\frac{16}{(1-2 x)^{2}}
\end{aligned}
$$

(b)

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{\frac{4 x^{2}}{x^{2}}+\frac{x}{x^{2}}}{1 / x^{2}+\frac{2 x}{x^{2}}-\frac{x^{2}}{x^{2}}} \\
=\frac{4}{-1}=-4
\end{gathered}
$$

(c) (i) $\frac{d v}{d t}=8 t-12$
(ii)

$$
\begin{aligned}
8 t-12 & =0 \\
8 t & =12 \\
t & =\frac{12}{8} \\
& =1 \frac{1}{2}
\end{aligned}
$$

(d) when $x=3, y=\frac{1}{2}$
\therefore Point is $\left(3, \frac{1}{2}\right)$

$$
\begin{align*}
\text { grad } & =\frac{(x+1) \cdot 0-2 \cdot 1}{(x+1)^{2}} \\
& =\frac{-2}{(x+1)^{2}} \tag{1}
\end{align*}
$$

at $x=3$, gradient $=\frac{-2}{(3+1)^{2}}$

$$
=-\frac{2}{16}=-\frac{1}{8}
$$

Eau of tang: grad $=-\frac{1}{8},\left(3, \frac{1}{2}\right)$

$$
\frac{y-\frac{1}{2}}{x-3}=-\frac{1}{8}
$$

$$
\begin{aligned}
& 8 y-4=-x+3 \\
& x+8 y-7=0
\end{aligned}
$$

(e)

Question 7 (8 marks)
(a) $y=-2 x^{2}+7 x+4$
(i)

$$
\begin{gathered}
-2 x^{2}+7 x+4=0 \\
2 x^{2}-7 x-4=0 \\
\frac{(2 x-8)(2 x+1)}{2}=0 \\
(x-4)(2 x+1)=0
\end{gathered}
$$

\therefore Roots are 4 and $-\frac{1}{2}$
(ii) $\quad x=\frac{-7}{2 x-2}=-\frac{7}{-4}$

Axis of symmetry $x=1 \frac{3}{4}$
(iii)

$$
\begin{aligned}
y & =-2\left(1 \frac{3}{4}\right)^{2}+7 \times 1 \frac{3}{4}+4 \\
& =10 \frac{1}{8}
\end{aligned}
$$

\therefore Vertex is $\left(1 \frac{3}{4}, 10 \frac{1}{8}\right)$
(b) No real roots $\Delta<0$

$$
\begin{aligned}
& (k+1)^{2}-4.1 .4<0 \\
& k^{2}+2 k+1-16<0 \\
& k^{2}+2 k-15<0
\end{aligned}
$$

$$
\therefore \quad x^{2}+(k+1) x+4=0
$$

has n real roots
when

$$
-5 \leq k \leq 3
$$

(iv)

