Question 1 (14 marks)

(a) Evaluate $\frac{\sqrt{125-7.1^{2}}}{2009}$. Write your answer in scientific notation correct to two significant figures.
(b) Write the recurring decimal $0.0 \dot{8} \dot{7}$ in the form $\frac{a}{b}$ where a and b are integers.
(c) Factorise $27-n^{3}$
(d) Express $\frac{3+\sqrt{2}}{3-\sqrt{2}}$ with a rational denominator in simplest form.
(e) Solve $|2 x+3|>21$
(f) Solve $2^{3 x}=32$
(g) Find the exact solution(s) to $2 x^{2}=-7 x-3$ in simplest form.

Question 2 (14 Marks) Start this question on a new page.
(a) Consider the function $f(x)=x^{2}+6 x+8$.
(i) Find the vertex. 2
(ii) Find the y-intercept. $\mathbf{1}$
(iii) Find the x-intercepts. 2
(iv) Draw a neat sketch showing the vertex and any intercepts. $\mathbf{1}$
(v) State the domain and range of the function. $\mathbf{2}$
(b) Show that $f(x)=x^{5}+3 x^{3}$ is an odd function. 2
(c) Draw a neat sketch of $y=\frac{1}{x+1}$
(d) Draw the region defined by $x^{2}+y^{2}<4 \quad \mathbf{2}$

Question 3 (14 Marks) Start this question on a new page.
(a) Find the exact value of $\cos 150^{\circ}$

Marks

1
(b) Solve $2 \sin \theta=1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(c) Prove that $\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}=\cot ^{2} \theta$
(d) If $\cos \theta=\frac{5}{6}$ and $\sin \theta<0$ then find the exact value of $\tan \theta$.
(e) A hiker leaves base camp on a bearing of 48° and travels for 2.4 km until he hits the highway. The highway runs directly North-South, and he follows it South for 2.2 km .
(i) Draw a neat diagram clearly indicating all relevant information.
(ii) Show that the distance (as the crow flies) that the hiker is from the base camp is 1.88 km (to 2 decimal places).
(iii)What bearing is the base camp from his current location?

Give your answer to the nearest degree.

Question 4 (14 Marks) Start this question on a new page.
(a) In the diagram below A is the point $(3,1)$ and B is the point $(-1,7)$.

NOT TO SCALE
(i) Find the exact length of the interval AB .
(ii) Find the gradient of the interval AB .
(iii) Find the coordinates of C , the midpoint of the interval AB .
(iv) Find the equation of the line that passes through C and is perpendicular to AB . Give your answer in general form.

Question 4 continued.

(b) Find the equation of the line that makes an angle of 60° with the positive x-axis and has y-intercept of -3 . Write your equation in the form $y=m x+b$ where m and b are exact values.
(c) The two lines below intercept at the point P .

$$
\begin{aligned}
& 2 x-y+1=0 \\
& 3 x+y-11=0
\end{aligned}
$$

(i) Show that the coordinates of P is $(2,5)$
(ii) Find the equation of the line that passes through P and the point $(3,1)$. Give your answer in general form.

Question 5 (14 Marks) Start this question on a new page.
(a) Differentiate:
(i) $y=9 x^{5}$

1
(ii) $\quad f(x)=(2 x+1)(x-2)^{5}$
(iii) $y=\frac{x^{2}}{x^{2}+1}$
(b) The derivative of a function is defined as $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Use this equation to differentiate $f(x)=x^{2}-1$
(c) For the curve $y=x^{3}-3 x^{2}+3 x-1$
(i) Find the gradient of the tangent to the curve at $x=2$.
(ii) Hence find the equation of the tangent to the curve at $x=2$. Give your answer in general form.

Question $6 \quad(14$ Marks) \quad Start this question on a new page.

(a) If the two roots of the equation $y=2 x^{2}-6 x+5$ are α and β then find the value of:
(i) $\alpha+\beta$ 1
(ii) $\alpha \beta$ 1
(iii) $\alpha^{2}+\beta^{2} \quad 2$
(b) Find the values of k for which $x^{2}+4 k x+16=0$ has equal roots. 3
(c) Solve the inequation $q^{2} \leq 3 q+40$. 3
(d) Find the equation of the parabola that passes through the 4 points $(0,5),(2,3)$ and $(4,9)$.

END OF PAPER

Question 1
(a)

$$
\begin{aligned}
& 0.004298929 \\
= & 4.3 \times 10^{-3}
\end{aligned}
$$

(b)

$$
\text { let } \begin{aligned}
x & =0.0878787 \ldots \\
100 x & =8.7878787 \ldots \\
99 x & =8.7 \\
x & =87 / 99 \\
& =87 / 990 \\
& =29 / 330
\end{aligned}
$$

(c) $27-n^{3}=(3-n)\left(9+3 n+n^{2}\right)$
(d)

$$
\begin{aligned}
\frac{3+\sqrt{2}}{3-\sqrt{2}} \times \frac{3+\sqrt{2}}{3+\sqrt{2}} & =\frac{9+6 \sqrt{2}+2}{9-2} \\
& =\frac{11+6 \sqrt{2}}{7}
\end{aligned}
$$

(e) if $\$ 2 x+3 \>0 then: if $\{2 x+3 \ll 0$ then:

$$
\begin{aligned}
& 2 x+3>21 \\
& 2 x>18 \\
& -2 x-3>21 \\
& \therefore-2 x>24 \\
& x>9 \\
& x<-12
\end{aligned}
$$

Hence $x<-12$ or $x>9$
(f)

$$
\begin{aligned}
2^{3 x} & =2^{5} \\
3 x & =5 \\
x & =5 / 3
\end{aligned}
$$

(g)

$$
\begin{gathered}
x=5 / 3 \\
2 x^{2}+7 x+3=0 \\
(2 x+1)(x+3)=0 \\
x=-1 / 2 \text { or }-3
\end{gathered}
$$

QUESTION 2

a) i) $x=\frac{-b}{2 a}$
$\therefore y=(-3)^{2}+6(-3)+8$
\therefore Vertex $(-3,-1)$
$x=\frac{-6}{2}$
$y=9-18+8$
$x=-3$
(1) $y=-1$
(1)
ii) $\quad y$-int when $x=0$

$$
\begin{align*}
& \therefore y=(0)^{2}+6(0)+8 \\
& y=8 \\
& \therefore(0,8) \tag{1}
\end{align*}
$$

iii) x-int when $y=0$
$x^{2}+6 x+8=0$
$(x+4)(x+2)=0$
$x=-4$ or $x=-2$
$\therefore(-4,0) \quad(-2,0)$
(2)
iv)

v) Domain: all real x-values
(1)

Range: $y \geq-1$
(1)
b) For an odd function $f(-x)=-f(x)$ given $f(x)=x^{5}+3 x^{3}$ of $f(x)=-f(-x)$

$$
\begin{align*}
& f(-x)=(-x)^{5}+(-x)^{3} \text { and }-f(x) \\
&=-\left(x^{5}+3 x^{3}\right) \tag{1}\\
&=-x^{5}-x^{3} \quad \text { (1) } \tag{1}
\end{align*}
$$

\therefore Function is an odd function.

$$
\begin{equation*}
\text { If sha } f(x) \neq f(-x) \tag{1}
\end{equation*}
$$

c)

d)

Year 11 Math Preliminary 2009 Sample Answers Question 3
(a) $\cos \left(150^{\circ}\right)=\cos \left(180^{\circ}-30^{\circ}\right)=-\cos 30^{\circ}=-\frac{\sqrt{3}}{2}$
(b)

$$
\begin{align*}
& 2 \sin \theta=1 \\
& \sin \theta=\frac{1}{2} \quad \begin{array}{r}
\text { S } \\
\theta=30^{\circ}
\end{array} \\
& \begin{aligned}
& \sin 30^{\circ}=\sin \left(180^{\circ}-150^{\circ}\right) \\
&=\sin 150^{\circ} \\
&=\frac{1}{2} \\
& \therefore \theta=30^{\circ}, 158^{\circ} \\
&(1)
\end{aligned}
\end{align*}
$$

(c) $\cos ^{2} \theta+\sin ^{2} \theta=1 \Rightarrow \cos ^{2}=1-\sin ^{2} \theta$ and $\sin ^{2} \theta=1-\cos ^{2} \theta$

$$
\begin{aligned}
\text { LHS } & =\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta} \\
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& =\left(\frac{\cos \theta}{\sin \theta}\right)^{2} \\
& =(\cot \theta)^{2} \\
& =\cot ^{2} \theta \\
& =\text { RHS }
\end{aligned}
$$

(D) $\quad \cos \theta=\frac{5}{6}$

$$
x^{2}+5^{2}=6^{2}
$$

$\stackrel{0}{2} \underbrace{6}$

$$
\begin{aligned}
& x^{2}=36-25 \\
& x^{2}=11 \\
& x= \pm \sqrt{11}
\end{aligned}
$$

$$
\begin{align*}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \quad \text { given } \cos \theta>0 \text { and } \sin \theta<0 \\
& \therefore \tan \theta<0 \Rightarrow x=-\sqrt{11} \\
& \tan \theta=\frac{-\sqrt{11}}{5}=-\frac{\sqrt{11}}{5} \tag{1}
\end{align*}
$$

(iii) $\angle N B D=\angle B D A$ (Alternate angles, $B N \| A D$)

$$
\begin{aligned}
d^{2} & =a^{2}+b^{2}-2 a b \cos (\angle B D A)(1) \quad \text { cosine rule } \\
& =(2.4)^{2}+(2.2)^{2}-(2)(2.4)(2.2)\left(\cos 48^{\circ}\right) \\
& =3.53398
\end{aligned}
$$

$$
\sqrt{d^{2}}=d=1.88 \mathrm{~km} \text { (1) to } 2 \text { decimal places }
$$

(iii)

$$
\begin{aligned}
& \frac{\sin \phi}{a}=\frac{\sin \angle B D A}{d} \\
& \frac{\sin \phi}{2.4}=\frac{\sin 48^{\circ}}{1.88} \\
& \sin \phi=\frac{\sin 48^{\circ} \times 2.4}{1.88} \\
& \sin ^{-1}\left(\frac{\sin 49^{\prime} \times 2.4}{1.88}\right)=\phi \\
& \phi=71^{\circ} 34^{\prime} \\
& \theta=360^{\circ}-71^{\circ} 34^{\prime} \\
& =288^{\circ} 26^{\prime}
\end{aligned}
$$

(1) Sine Rule

$$
\begin{array}{ll}
=288^{\circ} 26^{\prime} & \text { from current } \\
=288^{\circ}\left(T_{0} \text { nearest degree.) (1) } 288^{\circ} \mathrm{T}\right.
\end{array}
$$

Question 4 Year ll Mathematics Preliminary 2009.
(a) (1)

$$
\begin{aligned}
A B & =\sqrt{(3+1)^{2}+(1-7)^{2}} \\
& =\sqrt{16+36} \\
& =\sqrt{52} \\
& =2 \sqrt{13}
\end{aligned}
$$

$$
\text { (11) } \begin{aligned}
m_{A B} & =\frac{7-1}{-1-3} \\
& =\frac{6}{-4} \\
& =\frac{-3}{2}
\end{aligned}
$$

(2) $\left[\begin{array}{l}\text { if they } \\ \text { used tie } \\ \text { calculator } \\ \text { a mark } \\ \text { was } \\ \text { deducted }\end{array}\right]$
(11) Equation line through $(2,5)$ and $(3,1)$

$$
\begin{aligned}
& m=\frac{1-5}{3-2} \\
& m=-4 \\
& y-1=-4(x-3) \\
& y-1=-4 x+12 \\
& \therefore 4 x+y-13=0
\end{aligned}
$$

(iii) midpoint $A B=\left(\frac{3-1}{2}, \frac{1+7}{2}\right)$

$$
\therefore \quad C=(1,4) \vee(1)\left[\begin{array}{l}
\text { They need brackets for } \\
\text { The point but a mark } \\
\text { was not deducted }
\end{array}\right]
$$

(iv) Equations line

$$
\begin{aligned}
m & =\frac{2}{3} \checkmark c=(1,4) \\
y-4 & =\frac{2}{3}(x-1) \\
3 y-12 & =2 x-2
\end{aligned}
$$

$$
\begin{aligned}
& 12=2 x-2 \\
& 0=2 x-3 y+10 \quad(3)
\end{aligned}
$$

(b) $\tan 60^{\circ}=m$

$$
\therefore m=\sqrt{3}
$$

 used.

$$
\therefore y=\sqrt{3} x-3, \quad(2)
$$

I mark for $y=m x+b$ in this order only
(c)

$$
\begin{align*}
& 2 x-y+1=0 \tag{1}\\
& 3 x+y-11=0 \tag{2}
\end{align*}
$$

(1) + (2)

$$
\begin{aligned}
5 x-10 & =0 \\
5 x & =10 \\
\therefore x & =2
\end{aligned}
$$

sub in (1) $4-y+1=0$

Both parts $x=2, y=5$ must be shown. I mark each part.

$$
\begin{aligned}
5-y & =0 \\
y & =5 \\
\therefore \quad & \quad \operatorname{sis}(2,5)
\end{aligned}
$$

(2)

Question s
a) $1 . y=9 x^{5}$

$$
\begin{equation*}
\frac{d y}{d x}=45 x^{4} \tag{1}
\end{equation*}
$$

(iI)

$$
\begin{align*}
f(x) & =(2 x+1)(x-2)^{5} \quad\left[\begin{array}{ll}
u=2 x+1 & v=(x-2)^{5} \\
\frac{d u}{d x}=2
\end{array}\right. \\
& =u v \\
f^{\prime}(x) & =v \frac{d v}{d x}=5(x-2)^{4} \\
& =2(x-2)^{5}+(2 x+1) 5(x-2)^{4} \text { (1) mark } \\
& =(x-2)^{4}[2(x-2)+5(2 x+1)] \quad \text { ignore subsequent } \\
& =(x-2)^{4}(12 x+1)
\end{align*}
$$

(III)

$$
\begin{aligned}
y & =\frac{x^{2}}{x^{2}+1} \\
& =\frac{u}{v}
\end{aligned}
$$

(b)

$$
\begin{align*}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-1-\left(x^{2}-1\right)}{h} \tag{1}\\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-1-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h} \tag{1}\\
& =2 x
\end{align*}
$$

$$
=\lim _{h \rightarrow 0} \frac{x^{2}+2 h x+h^{2}-1-x^{2}+1}{h}
$$

no marks if they just wrote $f^{\prime}(x)=2 x$
c) (1)

$$
\begin{align*}
y & =x^{3}-3 x^{2}+3 x-1 \\
\frac{d y}{d x} & =3 x^{2}-6 x+3 \text { at } x=2 \\
& =3(2)^{2}-6(2)+3 \\
& =12-12+3 \\
& =3 \tag{1}
\end{align*}
$$

\therefore gradient of the tangent at $x=2$ is 3
(ii) when $x=2, y=x^{3}-3 x^{2}+3 x-1$ some students

$$
\begin{align*}
& =2^{3}-3(2)^{2}+3(2)^{-1} \\
& =1 \tag{1}
\end{align*}
$$ have done this in part (1).

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \quad m=3, \quad(2,1) \\
y-1 & =3(x-2)(1) \\
y-1 & =3 x-6 \\
3 x-y-5 & =0
\end{aligned}
$$

Mates Soluabos

Q6 (a) $y=2 x^{2}-6 x+5$
(i) $\alpha+\beta=\frac{-6}{a}=\frac{-(-6)}{2}=3$.
(ii) $\alpha \beta=\frac{c}{a}=\frac{5}{2}$
(iii)

$$
\begin{equation*}
\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta: \quad \text { lank iclendy } A x \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& =3^{2}-2(5 / 2) . \\
& =4 .
\end{aligned}
$$

(1)
(b) $x^{2}+4 k x+16=0 \quad$ has equed vot if $\Delta=0$ $(4 k)^{2}-4(1)(16)=0$ inave equattiy to zeno.

$$
16 k^{2}-64=0
$$

$$
\begin{equation*}
k^{2}-4=0 \tag{3}
\end{equation*}
$$

(1 mak factousation)
(c)

$$
\text { (d) } y=a x^{2}+b x+c \quad \text { of } x=0 \quad y=5
$$

$$
c=5
$$ 1 mast

$$
\begin{aligned}
\therefore y & =a x^{2}+b x+5 \quad y a x-2 \\
3 & =4 a y=3 .
\end{aligned}
$$

$$
\therefore \quad 4 a+2 b=-2
$$

$$
\therefore 2 a+6=-1 \text { (1) }
$$

luak

$$
\text { ff } x=4 \quad y-9
$$

$$
\therefore q=16 a+46+5
$$

$$
16 a+4 b=4
$$

$\therefore \quad 4 a+b=1$
1 mank

$$
\begin{align*}
& \begin{array}{r}
\quad(k-2)(1 \\
\therefore= \\
6 q+40
\end{array} \\
& 1 \text { malk solution } \\
& q^{2} \leq 3 q+40 \\
& q^{2}-3 q-40 \leq 0 \\
& \therefore \quad(q-8)(q+5) \leqslant 0 \quad \& 1 \text { monk } \tag{3}\\
& -5 \leqslant 9 \leqslant 8 \text {. } 1 \text { mack. }
\end{align*}
$$

$+$

$$
\begin{aligned}
2 a & =2 \\
\therefore a & =1 \\
\therefore b & =-3 \\
\therefore y & =x^{2}-3 x+5
\end{aligned}
$$

