Question 1(14 marks)		
(a)	Evaluate $\frac{\sqrt{125-7.1^2}}{2009}$. Write your answer in scientific notation correct to two significant figures.	2
(b)	Write the recurring decimal $0.0\dot{8}\dot{7}$ in the form $\frac{a}{b}$ where <i>a</i> and <i>b</i> are integers.	2
(c)	Factorise $27 - n^3$	1

(d) Express
$$\frac{3+\sqrt{2}}{3-\sqrt{2}}$$
 with a rational denominator in simplest form. 3

(e) Solve
$$|2x+3| > 21$$
 2

(f) Solve
$$2^{3x} = 32$$
 2

(g) Find the exact solution(s) to
$$2x^2 = -7x - 3$$
 in simplest form. 2

Question 2(14 Marks)Start this question on a new page.Marks

(a) Consider the function
$$f(x) = x^2 + 6x + 8$$
.

	(i)	Find the vertex.	2
	(ii)	Find the y-intercept.	1
	(iii)	Find the x-intercepts.	2
	(iv)	Draw a neat sketch showing the vertex and any intercepts.	1
	(v)	State the domain and range of the function.	2
(b)	Show	that $f(x) = x^5 + 3x^3$ is an odd function.	2
(c)	Draw	y a neat sketch of $y = \frac{1}{x+1}$	2

(d) Draw the region defined by
$$x^2 + y^2 < 4$$
 2

Ques	tion 3	(14 Marks)	Start this question on a new page.	Marks
(a)	Find tl	he exact value of	cos150°	1
(b)	Solve	$2\sin\theta = 1$ for 0°	$\theta \le \theta \le 360^{\circ}$	2
(c)	Prove	that $\frac{1-\sin^2\theta}{1-\cos^2\theta} =$	$\cot^2 heta$	2
(d)	If cos	$\theta = \frac{5}{6}$ and $\sin \theta$	< 0 then find the exact value of $\tan \theta$.	3
(e)	A hike until h and he	er leaves base car he hits the highwa follows it South	np on a bearing of 48° and travels for 2.4 km ay. The highway runs directly North-South, for 2.2 km.	
	(i)]	Draw a neat diag	ram clearly indicating all relevant information.	1
	(ii)	Show that the dis the base camp is	tance (as the crow flies) that the hiker is from 1.88 km (to 2 decimal places).	2
	(iii)V	What bearing is the Give your answe	ne base camp from his current location? r to the nearest degree.	3

Question 4	(14 Marks)	Start this question on a new page.	Marks
------------	------------	------------------------------------	-------

(a) In the diagram below A is the point (3,1) and B is the point (-1,7).

(i)	Find the exact length of the interval AB.	2
(ii)	Find the gradient of the interval AB.	1
(iii)	Find the coordinates of C, the midpoint of the interval AB.	1
(iv)	Find the equation of the line that passes through C and is perpendicular to AB. Give your answer in general form.	3

Question 4 continued.

- (b) Find the equation of the line that makes an angle of 60° with the positive *x*-axis and has *y*-intercept of -3. Write your equation in the form y = mx + b where *m* and *b* are exact values.
- (c) The two lines below intercept at the point P.

$$2x - y + 1 = 0$$
$$3x + y - 11 = 0$$

- (i) Show that the coordinates of P is (2,5) 2
- (ii) Find the equation of the line that passes through P and the point (3,1). Give your answer in general form.

Question 5 (14 Marks) Start this question on a new page. Marks

- (a) Differentiate:
 - (i) $y = 9x^5$ 1

(ii)
$$f(x) = (2x+1)(x-2)^5$$
 2

$$(iii) \quad y = \frac{x^2}{x^2 + 1}$$

(b) The derivative of a function is defined as $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ 3 Use this equation to differentiate $f(x) = x^2 - 1$

(c) For the curve $y = x^3 - 3x^2 + 3x - 1$

(i)	Find the gradient of the tangent to the curve at $x = 2$.	2
-----	--	---

(ii) Hence find the equation of the tangent to the curve at x = 2. **3** Give your answer in general form.

4

Question 6	(14 Marks)	Start this question on a new page.	Marks
------------	------------	------------------------------------	-------

- (a) If the two roots of the equation $y = 2x^2 6x + 5$ are α and β then find the value of:
 - (i) $\alpha + \beta$ 1
 - (ii) $\alpha\beta$ 1

(iii)
$$\alpha^2 + \beta^2$$
 2

(b) Find the values of k for which $x^2 + 4kx + 16 = 0$ has equal roots. **3**

(c) Solve the inequation
$$q^2 \le 3q + 40$$
. 3

(d) Find the equation of the parabola that passes through the points (0,5), (2,3) and (4,9).

END OF PAPER

(Juestion 1 0.004298929 (α) $= 4.3 \times 10^{-3}$ let x = 0.0878787...(b)100x = 8.7878787... $\therefore 99x = 8.7$ $x = \frac{8.7}{99}$ = 87/990 = 29/330 1 $(c) 27 - n^3 = (3 - n)(9 + 3n + n^2)$ (d) $3+\sqrt{2} \times 3+\sqrt{2}$ $= \frac{9+6\sqrt{2}+2}{9-7}$ 3+57 $= 11 + 6\sqrt{2}$ (e) if \$2x+3\$>0 then: if \$2x+3\$<0 then ! -2x-3>212x+3>21 2x > 18 = -2x > 24 $\chi < -12$ X >9 Hence x<-12 or x>9 $2^{3\chi} = 2^5$ (f)3x = 5 $\chi = \frac{5}{3}$ $2x^2 + 7x + 3 = 0$ (q) (2x+1)(x+3) = 0 $x = -\frac{1}{2}$ or -3

QUESTION 2

a) i)
$$x = \frac{-b}{2a}$$

 $x = \frac{-6}{2}$
 $x = -3$ (1) $y = -1$ (1)
ii) y -int when $x = 0$
 $\therefore y = (0)^2 + 6(0) + 8$
 $y = 8$
 $\therefore (0,8)$ (1)
iii) x -int when $y = 0$
 $x^2 + 6x + 8 = 0$
 $(x + 4)(x + 2) = 0$
 $x = -4 \text{ or } x = -2$
 $\therefore (-4,0)^{-}(-2,0)$ (2)

b) For an odd function f(-x) = -f(x) given $f(x) = x^5 + 3x^3$ $f(-x) = (-x)^5 + (-x)^3$ and $-f(x) = -(x^5 + 3x^3)$ $= -x^5 - x^3$ (1) $= -x^5 - x^3$ (1) \therefore Function is an odd function.

If show f(x) \$ f(-x) mind (1)

.

Year II Math Preliminary 2009 Sample Answers Question 3 $(35(150^\circ) = (35(180^\circ - 30^\circ) = -(3530^\circ) = -\frac{\sqrt{3}}{2})$ (a)2Sin0=1(6) 2 $\sin \theta = \frac{1}{2}$ 0=30° $\sin 30^\circ = \sin (180^\circ - 150^\circ)$ = Sin 150° $= \frac{1}{2}$ $\therefore \theta = 30^{\circ}, 150^{\circ}$ (i) $\cos^2 \theta + \sin^2 \theta = 1 => \cos^2 \theta = 1 - \sin^2 \theta \text{ and } \sin^2 \theta = 1 - \cos^2 \theta$ (C) $LHS _ 1 - Sin^2 \theta$ 1- 030 (v3°0 Sm²0 $\frac{(030)^2}{\sin\theta}$ (coto) ----wt20 (1) RHS \simeq $\chi^2 + 5^2 = 6^2$ (D) $x^{2} = 36 - 25$ 5 0 10 $\chi^2 = 11$ $-\overline{\Pi} = X$ \bigcirc N=± tan0 = Sin0and Sin 0<0 <u>(130 > 0</u> giver 630 : tom 0 < 0 => $\chi = -\sqrt{11}$ $tom 0 = -\sqrt{11}$ $\sqrt{11}$ Ō 5 5 $\overline{\mathbb{O}}$

Ń \square (E) a = Z.4 km48 $z.z \mid m = b$ 48 comp E N В \$ \$ O d = ? current position Ĩ <u>ZNBD</u> = ZBDA (Alternate angles, BN/IAD) 2- n² LL² - Dal Pro(IBDA) (D) (JEINA Rule $d^{2} = u^{2} + b^{2} - 2ab los(∠BDA) () (USm)$ = (2,4)² + (2,2)² - (2)(2,4)(2,2)(US48°) Wisime Rule = 3.53398 $\int d d = d =$ 1.88 km 1 to 2 decimal places Sin L BDA <u>Sìn Ø</u> Sie Rule Û Sin48 Sint 2,24 1.88 $= \underline{Sm} \frac{48^{\circ} \times 2.4}{158}$ Sind Sin-1 (Sm 48' × 2.4) = ¢ $\phi = 71^{\circ}34'$ \bigcirc $Q = 360^{\circ} - 71^{\circ} 34^{\prime}$ From arment position is - Camp 288°26' 288° (To nearest degree.) D. 288°T

(a)(1)
$$AB = \sqrt{(3+1)^2 + (1-7)^2}$$

 $= \sqrt{16+36}$
 $= \sqrt{52}$
 $= 2\sqrt{13}$
(ii) $M_{AB} = \frac{7-1}{-1-3}$
 $= \frac{6}{2}$
 $= \frac{6}{2}$
 $= \frac{3}{2}$
(iii) Mag = 1-1
 $= \frac{6}{2}$
 $= \frac{6}{2}$

(III) Midpoint AB =
$$\left(\frac{3-1}{2}, \frac{1+7}{2}\right)$$

.'. $C = (1, 4) \nu (1)$ [They need brackets for
-the point but a mark
was not deducted]

(1v) Equation d line

$$m = \frac{2}{3}\sqrt{c} = (1, +)$$

 $y - 4 = \frac{2}{3}(2c - 1)\sqrt{3}$
 $3y - 12 = 22c - 2$
 $0 = 22c - 3y + 10\sqrt{3}$

(b)
$$\tan 60^{\circ} = m$$

 $\therefore m = 13 \vee$
 $\therefore y = \sqrt{3} \times (2)$ [Imark for $y = m \times tb$ in this
order only order only $\sqrt{100}$

(c)
$$20x-y+1=0$$
 - (d)
 $3x+y-11=0$ - (d)
(d) + (d) $50x-10=0$
 $50x=10$
 $10x=2$
 $10x=2$
 $5-y=0$ (2)
 $y=5v$
 $10x=5v$
 $10x=2$
 $y=5v$
 $10x=10$
 $y=5v$
 $10x=10$
 $10x=10$

Both parts
$$x=2$$
, $y=5$
must be shown.
I mark each part.

Year 11

Question 5 a) 1. $y = 9x^5$ $\frac{dy}{dx} = 45x^4$

(1)
$$f(x) = (2x+1)(x-2)^{5}$$
 $[v = 2x+1]$ $V = (x-2)^{5}$
 $= vv$
 $f'(x) = v \frac{du}{dx} + v \frac{dv}{dx}$
 $= 2(x-2)^{5} + (2x+1) = (x-2)^{4}$ (1) morb
 $= (x-2)^{4} [2(x-2) + 5(x-2)^{4}$ (1) morb
 $= (x-2)^{4} [2(x-2) + 5(x-2)^{4}$ (1) morb
 $= (x-2)^{4} [2(x-2) + 5(x-2)^{4}$ (1) morb
 $= (x-2)^{4} [(x-2) + 5(x-2)^{4}$ (1) morb

Mathematics Freliminary Examination

((11)
$$y = \frac{x^2}{x^{n+1}}$$

$$= \frac{y}{\sqrt{2}}$$

$$\frac{du}{dx} = \frac{y}{\frac{du}{dx} - u} \frac{dy}{dx}$$

$$= \frac{2x(x^{n+1}) - 2x + x^{n}}{(x^{n+1})^{2}}$$

$$= \frac{2x}{(x^{n+1})^{2}}$$

$$= \frac{2}{(x^{n+1})^{2}}$$

(b)
$$f'(zc) = \lim_{h \to 0} \frac{f(zc+h) - f(zc)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^{2}-1-(x^{2}-1)}{h} (1)$$

$$= \lim_{h \to 0} \frac{x^{2}+2hx+h^{2}-1-x^{2}+1}{h} (1)$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= \lim_{h \to 0} \frac{h(2x+h)}{h}$$

$$= 2xc \qquad (1) \qquad no morks if they just wrote f'(x) = 2xc$$

c) (1)
$$y = x^{3} - 3x^{2} + 3x - 1$$

 $\frac{dy}{dx} = 3x^{2} - 6x + 3$ at $x = 2$
 $= 3(2)^{2} - 6(2) + 3$
 $= 12 - 12 + 3$
 $= 3$ (1)
 \therefore gradient of the tangent at $x = 2$ is 3

(") when x=2, $y=x^3-3x^2+3x-1$ some students = $x^3-3(2)^2+3(2)-1$ have done this = 1 (1) in part(1).

$$y - y_i = m(\infty - \infty_i) \quad m = 3, (2,1)$$

 $y - 1 = 3(\infty - 2)$
 $y - 1 = 3\infty - 6$
 $3\infty - y - 5 = 0$

2 2

Mates Solutons $\frac{06}{2}$ (a) $y = 2x^2 - 6x + 5$ $(i) \quad \alpha + \beta = -\frac{\beta}{2} = -\frac{(-6)}{2} = 3$ (i) = (i)(iii) $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$. Inat identify (4) = $3^{2} - 2(5\pi)$. = 4. Insut (1) (5) $\chi^2 + 4k\chi + 16 = 0$ has equal roots if $\Delta = 0$: $(4k)^2 - 4(1)(16) = 0$ in all equation to zero. : $16k^2 - 6Y = 0$ $\frac{16k^2 - 6Y = 0}{4k^2 - 4k} = 0$ $\frac{16k^2 - 4k}{(k-2)(k+1)} = 0 \quad (1) \text{ wdf factorisation}$ $\frac{(k-2)(k+2)=0}{1 \text{ walk solution}}$ $(d) y = a x^2 + b x + c$ $\frac{1}{3} = \frac{4\alpha}{1} + \frac{3}{1} = \frac{3$ $4\alpha + 2b = -2$ $4\alpha + 2b = -2$ $4\alpha + 4b + 5$ $\frac{169 + 16}{100} = \frac{1}{100}$

$\frac{1}{2} n = 0$	
$- \lambda - 1$	
$\frac{1}{1}$	
	te a che
$\frac{y}{y} = x - 3x + 3$	
	annan ann ann an ann an ann ann ann ann
	n ya manana manana manana a yana kana a sandan waya sakanana ka mwanaka kuka kuka kuka kana kana kana ka kaka i
	n an
	الى يې بې بې د دې د دې د دې د دې د دې د دې
	apara at a substance conclumning a series son to be substance. A substance and and and and an end of the series
	y annan san an a
	naga nanan kuma kuma kuma kuma mananan kada manan kana na kuma na kuma kang kang kang kang kuma kuma na kuma ka
	a so naadaan waxaa marka marka ah candaan naar o marka ah soo oo ta's ah soo ah soo ah soo ah soo ah soo ah ah
	n an
	·
aanaa ahaa ahaa sahaa sahaa sahaa ahaa a	19 MBH 1939 (1949-1947), 411 - 411 - 411 - 411 - 411 - 411 - 411 - 411 - 412 - 412 - 412 - 412 - 412 - 412 - 41
	er med annærsekenes var ut i nor en men men i en Blan men, nyr i nære vuster i mene var i er nyr en yr i næreftettettettettettettettettettettettette
	•

· · · ·

r