Question 1 (14 marks) Start a New Booklet

(a) Find the value of $19^{-0.7}$ correct to two decimal places.
(b) Find the integers a and b such that $(5-\sqrt{2})^{2}=a+b \sqrt{2}$.
(c) Express $0 . \dot{3} \dot{6}$ as a fraction in its simplest form.
(d) Simplify $\frac{x}{3}+\frac{3 x-1}{2}$
(e) \quad Simplify $\frac{\left(3 x y^{3}\right)^{3}}{3 x^{2} y^{4}}$
(f) Factorise completely
(i) $3 x^{3}+24$
(ii) $x^{4}-y^{4}$

Question 2 (19 marks) Start a New Booklet

(a) Solve simultaneously $\begin{aligned} & x+y=1 \\ & 2 x-y=5\end{aligned}$
(b) Solve $-4 \leq 2 x-3 \leq 7$ and graph your solution on the number line.
(c) Given that $f(x)=\left\{\begin{array}{ll}x+2 & \text { if } x<-1 \\ 1 & \text { if }-1 \leq x \leq 3 \\ x-2 & \text { if } x>3\end{array}\right.$ find $f(-2)+f(3)$.
(d) Given the function $y=\sqrt{25-x^{2}}$, state its domain and range.
(e) Sketch, showing all essential features
(i) $y=|x+2|$
(ii) $y=\frac{1}{x+2}+1$
(f) Sketch the parabola $y=x^{2}-x-6$ indicating the x and y intercepts and vertex.
(g) Solve, $3 x^{2}+4 x-1=0$, leaving your answer in simplest form.

Question 3 (14 marks) Start a New Booklet

(a) The line l cuts the x-axis at $M(-4,0)$ and the y-axis at $N(0,3)$ as shown. P is a point on the line l, and Q is the point $(0,8)$.

(i) Copy the diagram into your writing paper, clearly marking the given coordinates.
(ii) Find the equation of the line l.
(iii) Find the acute angle the line l makes with the x positive axis.
(iii) Show that the point $(16,15)$ lies on the line l.
(iv) Show that $\triangle M N Q$ is isosceles.
(v) Calculate the gradient of the line $Q M$. 1
(vi) $\quad N$ is the midpoint of the interval MP. Find the coordinates of the point P.
(vii) Show that $\angle P Q M$ is a right angle.
(viii) Find the area of $\triangle \mathrm{PQM}$.
(b) Find the perpendicular distance from the point $(4,5)$ to the line with the equation $5 x-12 y-4=0$.

Question 4 (16 marks) Start a New Booklet

(a) Solve $2 \cos \theta+1=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(b) Simplify $1-\frac{\sin A \cos A}{\tan A}$.
(c) In triangle $A B C, B C=11 \mathrm{~cm}, A C=5 \mathrm{~cm}$ and $A B=8 \mathrm{~cm}$.
(i) Draw a diagram to show this information.
(ii) Calculate the size of angle ABC , correct to the nearest degree.
(iii) Calculate the area of the triangle (to nearest cm^{2})
(d) Three boys are standing on the school oval. A is 35 metres from B and B is 48 metres from C.
The bearing of B from A is $036^{\circ} \mathrm{T}$ and the bearing of C from B is $156^{\circ} \mathrm{T}$.

(i) Copy the diagram into your answer booklet showing all information given above.
(ii) Show that $\angle A B C=60^{\circ}$.
(iii) Find the distance of C from A, correct to the nearest metre.
(iv) Find the bearing of A from C, correct to the nearest degree.

Question 5 (13 marks) Start a New Booklet

a) Find the value of x, giving reasons.
(b) Find the value of x, give reasons to justify your answer.

(c) In the figure $X Y$ is parallel to $A B$.

$$
\begin{aligned}
& A B=60 \mathrm{~mm} \\
& X Y=20 \mathrm{~mm} \\
& B Y=30 \mathrm{~mm}
\end{aligned}
$$

(i) Show that $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{XYC}$.
(ii) Calculate the length of CY.
(d)

Not To Scale
$\mathrm{A}, \mathrm{B}, \mathrm{E}$ and F are collinear points. ABCD and EFCD are parallelograms. BC and ED intersect at H such that H is the mid-point of BC .
Copy or trace the diagram onto your worksheet.
(i) Prove that $\triangle \mathrm{BHE} \equiv \triangle \mathrm{CHD}$.
(ii) Explain why $\mathrm{DC}=\mathrm{BE}$.

1
(iii) Hence or otherwise, show that $\mathrm{AF}=3 \mathrm{DC}$.

Question 6: (14 marks) Start a New Booklet

Differentiate the following, with respect to x
(i) $4 x^{3}-6 x+7$
(ii) $\frac{2}{x^{3}}$
(iii) $x \sqrt{x}$
(iv) $5 x(2 x-1)^{2}$
(v) $\left(4 x^{3}-7\right)^{5} \quad \mathbf{2}$
(vi) $\frac{4 x^{2}-2}{x+3}$
(vii) $x \sqrt{x+3}$, answer in its simplest form.

QI 2 unit
c)

$$
\begin{align*}
19^{-0.7} & =0.127 \lim ^{k}(\text { calc }) \\
& =0.13 \tag{2}
\end{align*}
$$

b)

$$
\begin{align*}
(5-\sqrt{2})^{2} & =25-10 \sqrt{2}+2 \\
& =27-10 \sqrt{2}(\max t)(2) \tag{2}\\
a & =27, b=10
\end{align*}
$$

c)

$$
\begin{aligned}
0.36 & =\frac{36}{99} \quad(1 \text { mark }) \\
& =\frac{4}{11}
\end{aligned}
$$

d)

$$
\begin{align*}
& \frac{x}{3}+\frac{3 x-1}{2} \\
= & \frac{2 x+3(3 x-1)}{6} \\
= & \frac{2 x+9 x-3}{6} \\
= & \frac{11 x-3}{6} \tag{2}
\end{align*}
$$

ii)

$$
\begin{aligned}
& x^{4}-y^{4} \\
= & \left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right) \quad(1 \text { mark }) \\
= & (x+y)(x-y)\left(x^{2}+y^{2}\right) \quad 2
\end{aligned}
$$

Preliminary Examination.
2unt 4earll 2010
Quechon 2
$x+y=1$

$$
\begin{equation*}
2 x-y=5 \tag{1}
\end{equation*}
$$

+(2) $3 x=6$

$$
\therefore x=2
$$

Subin (1) $\quad 2+y=1$
2 marks

$$
y=-1
$$

heak (2) $4-(-1)=5-$
$\therefore x=22 \mathrm{~s}$ the
$y=-1$ solution.
(2marks).
b) $-4 \leqslant 2 x-3 \leqslant 7$

2 marks

$$
\begin{aligned}
& -1 \leq 2 x \leq 10 \\
& -\frac{1}{2} \leq x \leq 5
\end{aligned}
$$

Solutiona shoubl be connected to number line
(2marks)
c) $f(-2)=0\} 1$ mark for 2 marks
$f(3)=1\}$ one of

$$
\begin{aligned}
\therefore f(-2)+f(3) & =0+1 \\
& =1
\end{aligned}
$$

$$
=1
$$

(2 marks)
skotch
d) $y=\sqrt{25-x^{2}}$

Dormain: $25-x^{2} \geqslant 0$

$$
-(5-x)(5+x) \geqslant 0
$$

2 marts

Domain + Range
amain $-5 \leq x \leq 5$ ruot be named.
Range: $0 \leqslant y \leqslant 5 \vee$ accordingly.
(2 manks)

Preliminary Examination
2 unit Yearll 2010.
(e)(1) $y=|x+2|$

1 mark both intercepts. 1 mark shape.

2 marks
(ii) $y=\frac{1}{x+2}+1$

* Remember to add He information to the graphs. Somestudents worked af information near the graph bot forgot
(f) $y=x^{2}-x-6$

4 marks
(g)

$$
\begin{aligned}
x & =\frac{-4 \pm \sqrt{4^{2}-(4 \times 3 \times-1)}}{2 \times 3} \\
& =\frac{-4 \pm \sqrt{28}}{6} \\
& =\frac{-4 \pm 2 \sqrt{7}}{6} \vee 1 \text { mark } \\
x & =\frac{-2 \pm \sqrt{7}}{2} \vee 1 \text { mark }
\end{aligned}
$$

3 marks

23 - 2urit
an) $m=\frac{3}{4} \quad b=3(1 \mathrm{mark})$

$$
\begin{equation*}
\therefore y=\frac{3}{4} x+3 \tag{2}
\end{equation*}
$$

iii) $\tan ^{-1}\left(\frac{3}{4}\right)=36.869 \cdots(6 / c)$

$$
\therefore \text { Acute } C \equiv 37^{\circ}
$$

iii)

$$
\begin{aligned}
& S 6(16,15) \text { into } \quad y=\frac{3}{4} x+3 \\
& 15=\frac{3}{4} \times 16+3 \\
& 15=15 \quad \therefore \text { Point lies }
\end{aligned}
$$

iv)

$$
\begin{align*}
P N & =5 \\
M N^{2} & =3^{2}+4^{2} \\
& =25 \\
M N & =\sqrt{25} \\
M N & =5 \tag{i}
\end{align*}
$$

\therefore Since 2 Sides $=$
\triangle MNP is Isosceles
v)

$$
\begin{aligned}
M_{Q M} & =\frac{8}{4} \\
& =2
\end{aligned}
$$

vi)

$$
\begin{aligned}
& M(-4,0) \sim(0,3) \\
& \frac{x-4}{2}=0 \quad \frac{y+0}{2}=3 \\
& \therefore P=(4,6)
\end{aligned}
$$

vii)

$$
\begin{align*}
M_{P_{A}} & =-\frac{2}{4} \quad M_{2 M}=2\left(m_{2}\right) \\
M_{1} & =-\frac{1}{2} \tag{0}
\end{align*}
$$

Since $m_{1} \times m_{2}=-1$
then $P Q \perp Q M$

$$
\therefore \angle P Q M=90^{\circ}
$$

vii)

$$
\begin{align*}
& Q M=\sqrt{80} \quad A=\frac{1}{2} \times 4 \times 8+\frac{1}{2} \times 2 \times 4 \\
& P Q=\sqrt{20} \quad \\
&=204 n+s^{2} \\
& \therefore A=\frac{1}{2} \times \sqrt{80} \times \sqrt{20} \\
&=20 \text { units }
\end{align*}
$$

b)

$$
\begin{aligned}
d & =\frac{\mid a x_{1}+b_{j_{1}}+c}{\sqrt{a^{2}+b^{2}}} \\
& =\left|\frac{4 \times 5+5 x-12-4}{\sqrt{5^{2}+(-12)^{2}}}\right| \\
& =\frac{44}{\sqrt{169}} \\
& =\frac{44}{13} u_{n} t_{5}
\end{aligned}
$$

a)

$$
\begin{aligned}
2 \cos \theta & =-1 \\
\cos \theta & =-\frac{1}{2} \\
(\cos 60 & \left.=\frac{1}{2}\right)^{1} \\
\therefore \theta & =120^{\circ}, 240^{\circ} \text { for }
\end{aligned}
$$

if $\theta=120^{\circ}$ io given
b)

$$
\begin{align*}
& 1-\frac{\operatorname{Sin} A \operatorname{Cos} A}{\operatorname{Tan} A} \text { orth angle } \\
= & 1-\operatorname{Sin} A \operatorname{Cos} A \div \frac{\operatorname{Sin} A}{\operatorname{Cos} A} \\
= & 1-\operatorname{Sin} A \operatorname{Cos} A \times \frac{\operatorname{Cos} A}{\operatorname{Sin} A} \tag{i}\\
= & 1-\operatorname{Cos}^{2} A \quad 1
\end{align*}
$$

$$
=\underline{\operatorname{Sin}^{2} A}, 3
$$

ci)

$$
\begin{align*}
\cos C & =\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
& =\frac{11^{2}+8^{2}-5^{2}}{2 \times 8 \dot{x} \|} \\
& =0-909 \cdots((a) c) \\
\angle A B C & =24 \cdot 6 \\
& =25^{\circ} \tag{2}
\end{align*}
$$

(ii) $A=\frac{1}{2} c b \sin C$

Any angle) $\quad=\frac{1}{2} \times 8 \times 11 \times(5.25)(2)$ if the
iv)

$$
\begin{gathered}
\text { accept } \\
18 \mathrm{~cm}^{2}
\end{gathered}
$$

$d)$
i)

$$
\text { ii) } \begin{aligned}
\angle A B D & =36\left(A 1+L^{\prime} \text { s on } 19\right) \\
\angle C B D & +156=180(\text { strangLe } C) \\
\angle C B D & =24^{\circ} \\
\angle A B C & =24+36 \\
& =60^{\circ} \\
& \quad(\text { Find } / \text { mark })
\end{aligned}
$$

iii)

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
&=3 s^{2}+4 s^{2}-2 \times 35 \times 48 \cos 60 \quad 1 \\
& a^{2}=1849 \\
& a=\sqrt{1849} \\
& a=43 \\
& \therefore \quad A C=43 m \quad 1
\end{aligned}
$$

$$
\text { 2 marks } \quad=18 \mathrm{~cm}^{2}
$$

$$
\begin{aligned}
& \frac{c}{\sin C}=\frac{b}{\sin B} \\
& \frac{\operatorname{Sin} C}{35}=\frac{\operatorname{Sin} 60}{43} \\
& \sin C=\frac{35 \sin 60}{43}\left(\begin{array}{l}
2 \operatorname{mon} 25
\end{array}\right) \\
& \begin{aligned}
5: C & =0.704 C \\
\angle C & =44.8 \\
C C & =4501
\end{aligned} \\
& \begin{aligned}
\sin C & =0.704 h^{\ldots} \\
\angle C & =44.8 \mathrm{~m} \\
\angle C & =45^{\circ} 1
\end{aligned} \\
& \angle C=45^{\circ} 1 \% \\
& \text { hearing }=2911 .(3)
\end{aligned}
$$

unit Prelim. 2010.
Question 5
3 marks
(d) In $\triangle B H E$ and $\triangle C H D$
$\mathrm{BH}=\mathrm{CH}$ (H is the midpoint of BC) \checkmark (NOT GIVEN)
$\angle B H E=\angle C H D$ (vertically opposite angles)
$\angle E B H=\angle D C H$ (alternate angles on parallel lines,

$$
\therefore \triangle B H E \equiv \triangle C H D(A, A, S .)
$$

1 mark I part correct for reasons
2 marks 2 parts correct for recons 3 marks Fully correct.
(ii) $D C=B E$ (correopondungsides in congruent triangles)
(iii) $D C=B E$ (from (ii))
$A B=D C$ (opposite sides in parallelograms)
$E_{F}=D C$ (opposite sides in parallelogram)

$$
\begin{array}{rlr}
A B+B E+E F & =3 \times D C \\
\therefore A F & =3 D C & 1 \text { mark }
\end{array}
$$

Fully Correct solution only

Preliminary Examination.
2 unit Yearll 2010

* Poor use d recoono, Inappropriate used symbols, L for angle may be used.
* If reasons incomplete or non-existant 1 mark given for 18°
(b) $\frac{6}{8}=\frac{x}{6}$ (intercepts on parallel linen) intercept theorem

$$
\begin{aligned}
8 x & =36 \\
x & =4.5 \mathrm{~cm}
\end{aligned}
$$

$(-)(-1) \ln \Delta A B C$ and $\Delta x y c$

$$
\left.\begin{array}{l}
\angle C \text { is common } \\
\angle A B C=\angle X Y C \text { (comsoponding angle, } A B \| x Y \text {) } \\
\angle B A C=\angle Y X C \text { (corresponding angle, } A B \| X Y \text {) }
\end{array}\right\} \begin{aligned}
& \text { only } 2 \\
& \text { angles ane } \\
& \text { recessany }
\end{aligned}
$$

$\therefore \therefore \triangle A B C H \| x y c$ (equiangular)
(all pairs of corresponding angles are equal)

* Proofs mut be finished off properly Lazily dore
(11)

$$
\begin{aligned}
\frac{x}{x+30} & =\frac{20}{60}(\text { correa } \\
60 x & =20(x+30) \\
60 x & =20 x+600 \\
40 x & =600 \\
x & =15 \\
\therefore c y & =15 \mathrm{~mm}
\end{aligned}
$$

* A reason rust be given.
$26-2$ unit

1)

$$
\begin{align*}
& y=4 x^{3}-6 x+7 \\
& y^{\prime}=12 x^{2}-6 \tag{1}
\end{align*}
$$

ii)

$$
\begin{align*}
& y=\frac{2}{x^{3}} \\
& y=2 x^{-3} \\
& y^{\prime}=-6 x^{-4} \quad\binom{\text { Accept for }}{2 \text {, make }} \\
& y^{\prime}=\frac{-6}{x^{4}} \tag{2}
\end{align*}
$$

iii)

$$
\begin{aligned}
& y=x \sqrt{x} \\
& y=x \times x^{\frac{1}{2}} \\
& y=x^{\frac{3}{2}} \\
& y^{\prime}=\frac{3}{2} x^{\frac{1}{2}} \\
& y^{\prime}=\frac{3 \sqrt{x}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& y=x x^{\frac{3}{2}} \\
& y=x^{\frac{1}{2}} \quad \text { (Acript) }
\end{aligned}
$$

(2)

1V)

$$
\begin{align*}
& y=\left(4 x^{3}-7\right)^{5} \\
& y^{\prime}=5 \times 12 x^{2}\left(4 x^{2}-7\right)^{4} \tag{2}\\
& y^{\prime}=60 x^{2}\left(4 x^{3}-7\right)^{4}
\end{align*}
$$

vi)

$$
\begin{align*}
& u=4 x^{2}-2 \quad u^{\prime}=8 x \\
& v=x+3 \quad v^{\prime}=1 \\
& y^{\prime}=\frac{v u^{\prime}-4 v^{\prime}}{v^{2}} \\
& y^{\prime}=\frac{(x+3) \cdot 8 x-\left(4 x^{2}-2\right) \cdot 1}{(x+3)^{2}} \\
& y^{\prime}=\frac{8 x^{2}+24 x-4 x^{2}+2}{(x+3)^{2}} \tag{2}
\end{align*}
$$

$$
y^{\prime}=\frac{4 x^{2}+24 x+2}{(x+5)^{2}}
$$

$$
y^{\prime}=\frac{2\left(2 x^{2}+12 x+1\right)}{(x+3)^{2}}
$$

vii)

$$
\begin{align*}
& u=x \\
& u^{\prime}=1 \quad v=(x+3)^{\frac{1}{2}} \\
& y^{\prime}=v u^{\prime}+u v^{\prime}=\frac{1}{2}(x+3)^{-\frac{1}{2}} \\
& y^{\prime}=(x+3)^{\frac{1}{2}}+x \cdot \frac{1}{2}(x+3)^{-\frac{1}{2}} \\
&=(x+3)^{\frac{1}{2}}+\frac{x}{2(x+3)^{\frac{2}{2}}} \\
&=\frac{2(x+3)+x}{2(x+3)^{\frac{1}{2}}} \\
&=\frac{2 x+6+x}{2 \sqrt{x+3}} \\
&=\frac{3 x+6}{n \sqrt{x+2}}=\frac{3(x+2)}{2 \sqrt{x+2}} \tag{3}
\end{align*}
$$

