Section I

10 Marks

Use the multiple-choice answer sheet for Questions 1 - 10

- 1) $\frac{8.964}{\sqrt{61.328}}$ expressed to 3 significant figures is:
 - A 1.145 B 1.14 C 1.144 D7.83
- 2) $p^3 8$ factorises to give:
 - **A** $(p-2)^3$ **B** $(p-2)(p^2+2p+4)$
 - **C** $(p-2)(p^2-2p+4)$ **D** $(p-2)(p^2+4p+4)$
- 3) If $f(x) = 5 3x 2x^2$ then f(-2) is equal to:
 - **A** 3 **B** -11 **C** 5 **D** -7
- 4) The largest possible domain of $y = \sqrt{4 x^2}$ is
 - **A** All real numbers **B** $x \le 2$
 - **C** $-2 \le x \le 2$ **D** x > -2 and x < 2

5) The value of x is

A 60° **B** 70° **C** 50° **D** 65°

6) Which of the following has solutions 4 and -3?

A $x^2 + x - 12 = 0$ **B** $x^2 - x - 12 = 0$ **C** $x^2 - 7x + 12 = 0$ **D** $x^2 + 7x - 12 = 0$

- 7) The solution for $x^2 49 \ge 0$ is
 - **A** $x \le -7$ and $x \ge 7$ **B** $x \ge -7$ and $x \ge 7$
 - **C** $x \le -7$ and $x \le 7$ **D** $-7 \le x \le 7$
- 8) $(2\sqrt{5}-1)^2$ is equal to
 - **A** 19 **B** $11-2\sqrt{5}$ **C** $19-2\sqrt{5}$ **D** $21-4\sqrt{5}$

Year 11 Mathematics

9) The perpendicular distance from the line 3x - 4y + 6 = 0 to the point (-1,-3) is

10) Which of the following graphs represent a function ?

Blank Page

Section II

Attempt Questions 11 to 16

Answer each question in separate writing booklets. All necessary working should be shown in every question.

Question 11 (14 Marks)	Marks
a) Express 0.024 as a fraction in its simplest form.	2
b) Solve simultaneously	2
3x - 2y = 29 $4x + 5y = 8$	
c) Solve $ 3x-8 < 1$	2
d) Solve $\frac{x+1}{3} + \frac{x}{4} = 5$	2
e) Simplify $\frac{x^2 - 144}{x^2 + 15x + 36} \div \frac{2x^2 - 24x}{(x+3)^2}$	3

f) Find the exact solution(s) to $4x^2 + 12x + 1 = 0$ in simplest form. **3**

Year 11 Mathematics

Preliminary Exam 2012

3

2

a) Sketch the following showing all essential features

Newington College

- i) $x^2 + y^2 = 9$ 2
- ii) $y = \frac{1}{x+3}$ 2
- iii) y = |x| + 3 2

iv)
$$y = 3^{-x}$$
 2

- b) Sketch the parabola $y = x^2 3x 18$. Clearly showing the coordinates of the x and y intercepts and the vertex.
- c) Show that $f(x) = x^5 16x$ is an odd function.

```
Question 13
```

(13 Marks)

Start a new booklet.

Marks

The diagram shows the points A(1,0) B(4,1) and C(-1, 6) in the Cartesian plane. Angle ABC is θ .

Copy and trace the diagram into your writing booklet.

a)	Show that C lies on the line $3x + y = 3$.	1
b)	Find the gradient of AB.	1
c)	Find the equation of AB.	1
d)	Find the length of AB.	1
e)	Show that AB and AC are perpendicular.	2
f)	Find the area of Δ ABC.	2
g)	Find $\tan \theta_{\perp}$	1
h)	Find the equation of the circle with centre A the passes through B.	1
i)	The point D is not shown on the diagram. The point D lies on the line	2
	3x + y = 3 between A and C, AD = AB. Find the coordinates of D.	
j)	On your diagram shade the region satisfying the inequality $3x + y \le 3$.	1

1

2

3

Question 14 (17 Marks)Start a new booklet.Marks

- a) Find the exact value of $\cos 150^{\circ}$
- b) Solve each equation for $0^0 \le \theta \le 360^0$

i)
$$\cos^2 \theta = \frac{1}{2}$$

ii)
$$\tan 2x = \sqrt{3}$$

c) A ship sales 50km from port A to port B on a bearing of 063°T then sails 130km from port B to port C on a bearing of 296°T.

i) Explain why $\angle ABC = 53^{\circ}$.

ii) Find, correct to the nearest km, the distance of port A from port C. 2

iii) Find the bearing of port A from port C. Answer correct to the anearest minute.

d) Prove that
$$\tan \theta + \cot \theta = \sec \theta \cos ec\theta$$
.

e) If
$$\cos \alpha = \frac{4}{5}$$
 and $\sin \alpha < 0$, find $\tan \alpha$.

Start a new booklet.

Question 15 (12 Marks)

a) Find the value of y, giving reasons.

- b) Find the size of each interior angle of a regular octagon. 2
- c) Let AD and BE be the two altitudes of triangle ABC. Suppose that AD=BE **4**
 - i) Prove that $\Delta ABE \equiv \Delta BAD$.
 - ii) Hence prove that $\triangle ABC$ is isosceles.

2

Question 15 continued.

d) i) Prove that ΔLMN and ΔYMX are similar. ii) Hence find YN.

Question 16 (21 Marks) <u>Start a new booklet.</u>

a) Differentiate the following with respect to x

i)	$y = 5x^4 - 7x^2 + 8$		1
----	-----------------------	--	---

ii)
$$y = \frac{3x^4 - 5x^2}{x}$$
 2

iii)
$$y = \frac{1}{x\sqrt{x}}$$
 2

$$\mathbf{v}) \qquad y = \frac{6}{x^4} \tag{1}$$

vi)
$$y = (3x+4)^5$$
 2

vii)
$$y = x(3-2x)^4$$
 2

viii)
$$y = \frac{x^2 + 5}{x - 2}$$
 2

ix)
$$y = x\sqrt{1-x^2}$$
, answer without fractional or negative indices **3**

Page **10** of **11**

Marks

4

Marks

Question 16 Continued.

- b) A function $f(x) = x^2 + 4x 12$ has a tangent with a gradient of -6 at the point P on the curve. Find the coordinates of P.
- c) Find the equation of the normal to the curve $y = x^2 8x + 7$ at the **3**

point (3,–8).

End of paper

Year IIMathematicsReliminary Even2012Section I11.
$$\frac{3}{12}$$
 Section I1. $\frac{3}{12}$ Section I2. $p^{5}-3 = p^{3}-2^{3}$ $= (p-2)(p^{2}+2p+4)$ (B)3. $f(\infty) = 5-3\infty - 2x^{2}$ $p(-2) = 5-3\infty - 2$

Section 2
Question 11
a) Let
$$x = 0.024$$

 $= 0.024444...$
 $1000x = 24.444...$
 $100x = 2.444...$
 $100x$

d)
$$\frac{3c+1}{3} + \frac{x}{4} = 5$$

 $4(3c+1) + 3cc = 60$
 $4cc+1 + 3cc = 60$
 $1cc^{2} + 15cc^{2} + 3cc^{2} - 24cc^{2}$
 $cc^{2} + 15cc^{2} + 3c^{2} - 24cc^{2}$
 $cc^{2} + 12cc^{2} + 12c^{2}$
 $cc^{2} + 12cc^{2} + 12cc^{2}$
 $cc^{2} + 12cc^{2} + 12cc^{2} + 12cc^{2}$
 $cc^{2} + 12cc^{2} +$

a)
$$3x+y = 3$$
 C is (-1.6)
LHS = $3x+y$
 $=3(-1)+b$
 $=3$
 $=RHS$
 \therefore C lies on the line $3x+y=3$
b) $M_{RB} = \frac{y_{3}-y_{1}}{x_{3}-x_{1}}$ A(i,o) B(4,i)
 $=\frac{1-0}{4-1}$
 $=\frac{1}{3}$
 \therefore gradient AB is $\frac{1}{3}$
 $y = 0 = \frac{1}{3}(x-1)$
 $y = \frac{1}{3}(x-1)$
 $y = \frac{1}{3}(x-1)$
 $y = \frac{1}{3}(x-1)$
 $y = \frac{1}{3}(x-1)^{2} + (\frac{1}{3}(y-1))^{2}$
 $=\sqrt{10}$
 \therefore length AB is $\sqrt{10}$ units
b) $M_{RB} = \frac{1}{3}$ From part (b)
 $M_{RC} = \frac{y_{3}-y_{1}}{x_{2}-x_{1}}$ A(i,o) $c(-1,6)$
 $=\frac{1}{-1}$
 $=-3$
 $M_{AB} \times M_{AC} = \frac{1}{3} \times -3$
 $=-1$
 \therefore AB \perp AC

F)
$$d_{AC} = \sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$$

 $= \sqrt{(-1 - 1)^2 + (b - 0)^2}$
 $= \sqrt{100}$
 $= \sqrt{100}$
 $= \sqrt{100}$
 $= \sqrt{100}$
 $= \frac{1}{2} + x A C \times AB$
 $= \frac{1}{2} \times a \sqrt{10} \times \sqrt{10}$
 $= 10$
 $\therefore Area $\triangle ABC$ is lownith
 $= \frac{10}{300}$
 $= \frac{10}{300}$$

$$|| b^{2} = a^{2} + c^{2} - 2ac Cas B$$

$$= 180^{2} + 50^{2} - 2xi 30x 506x^{2}$$

$$= 180^{2} + 50^{2} - 2xi 30x 506x^{2}$$

$$= 11576 + 40477$$

$$b = 107 + 5937019$$

$$(. distance is 108km to)$$

$$nearest km$$

$$||) \frac{Sinc}{c} = \frac{SinB}{b}$$

$$Sinc = \frac{SinB}{b}$$

$$Sinc = \frac{SinS}{b}$$

$$C = 31^{6} \text{ Li} + 16 \text{ mearest}$$

$$min$$

$$C = 31^{6} \text{ Li} + 16 \text{ mearest}$$

$$C = 31^{6} \text{ Li} + 16 \text{ mearest}$$

$$C = 31^{6} \text{ Li} + 16 \text{ mearest}$$

$$C = 31^{6} \text{ Li} + 16 \text{ mearest}$$

$$C = 31^{6} \text{ Li} + 17 \text{ mearest}$$

$$C = 31^{6} \text{ Li} + 21^{6} \text{ Li}^{1} \text{ min}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ is (116 + 21^{6} \text{ Li}^{1}) \text{ min}}$$

$$\frac{Bearing}{c} \text{ lines are parallel}$$

$$\frac{Bearing}{c} \text{ lines} \text{ lines are parallel}$$

$$\frac{Bearing}{c} \text{ lines} \text{ lines} \text{ lines} \text{ lines} \text{ lines}$$

$$\frac{Bearing}{c} \text{ lines} \text{ lines} \text{ lines}$$

$$\frac{Bearing}{c} \text{ lines}$$

$$\frac{Bearing}{c} \text{ lines}$$

$$\frac{Bearing}{c} \text{ lines}$$

$$\frac{$$

$$\frac{1}{32} \int_{L}^{M} \frac{1}{40} \int_{N}^{N} \frac{1}{30} \int_{X}^{N} \frac{1}{30} \int_{X}^{21} \frac{1}{30$$

$$(1) \quad y = 5x^{4} - 7x^{2} + 8$$

$$\frac{dy}{dx} = 20x^{3} - 14x$$

$$(1) \quad y = \frac{3x^{4} - 5x^{2}}{x}$$

$$= \frac{3x^{4} - 5x^{2}}{x}$$

$$= \frac{3x^{4} - 5x^{2}}{x}$$

$$= \frac{3x^{3} - 5x}{x}$$

$$\frac{dy}{dx} = 9x^{2} - 5$$

$$(11) \quad y = \frac{1}{x\sqrt{3}x}$$

$$= \frac{1}{x\sqrt{3}x}$$

$$\frac{dy}{dx} = -\frac{3}{3}x^{-\frac{5}{3}}$$

$$\frac{dy}{dx} = -\frac{3}{3}x^{-\frac{5}{3}}$$

$$= \frac{-3}{2\sqrt{x}\sqrt{3}x}$$

$$(17) \quad y = \frac{6}{3x^{4}}$$

$$= -\frac{3}{2x^{4}}$$

$$(17) \quad y = \frac{6}{3x^{4}}$$

$$= -\frac{3}{3x^{4}}$$

$$(17) \quad y = \frac{6}{3x^{4}}$$

$$(17) \quad y = \frac{6}{3x^{4}}$$

$$= -\frac{3}{3x^{4}}$$

$$=$$

$$v_{1}) \quad y = 5c(3-2x)^{4}$$

$$= U \quad V$$

$$where$$

$$U = x \quad v = (3-2x)^{4}$$

$$\frac{du}{dx} = 1 \quad \frac{dv}{dx} = -8(3-2x)^{3}$$

$$\frac{du}{dx} = V \quad \frac{du}{dx} + U \quad \frac{dv}{dx}$$

$$= (3-2x)^{4} - 8 \approx (3-2x)^{3}$$

$$= (3-2x)^{3} [3-3x-8x]$$

$$= (3-2x)^{3} (3-10x)$$

$$V_{11}) \quad y = \frac{x^{2}+5}{x-2}$$

$$= \frac{U}{V}$$

$$where$$

$$U = x^{3}+5 \quad V = x-2$$

$$\frac{du}{dx} = 2x \quad \frac{dV}{dx} = 1$$

$$\frac{du}{dx} = \frac{V \quad \frac{du}{dx} - U \quad \frac{dv}{dx}}{\sqrt{2}}$$

$$= \frac{2x(x-2) - (x^{2}+5)}{(x-2)^{2}}$$

$$= \frac{2x^{2}-4x - x^{2}-5}{(x-2)^{2}}$$

$$= \frac{(x-5)(x+1)}{(x-2)^{2}}$$

Viii)
$$y = x \sqrt{1-x^{2}}$$

 $z = u \sqrt{1-x^{2}}$
where $u = x$ $V = (1-x^{2})^{\frac{1}{2}}$
 $\frac{du}{dx} = 1$ $\frac{dv}{dx} = \frac{1}{4}(1-x^{2})^{\frac{1}{2}}$
 $z = x(1-x^{2})^{\frac{1}{2}} = \frac{1}{2}(1-x^{2})^{-\frac{1}{2}}$
 $z = (1-x^{2})^{\frac{1}{2}} = -x^{2}(1-x^{2})^{-\frac{1}{2}}$
 $z = (1-x^{2})^{\frac{1}{2}} = -x^{2}(1-x^{2})^{-\frac{1}{2}}$
 $z = (1-x^{2})^{-\frac{1}{2}} = [1-x^{2}-x^{2}]$
 $z = -3$
 $z = -5$
when $x = -5$
 $z = -10$
 $x = -5$
 $z = -10$
 $x = -5$
 $z = -10$
 $z = -5$
 $z = -10$
 $z = -5$
 $z = -10$
 $z = -7$
 $z = -7$