## Section I

## 10 Marks

Use the multiple-choice answer sheet for Questions 1-10

1) $\frac{8.964}{\sqrt{61.328}}$ expressed to 3 significant figures is:
A 1.145
B 1.14
C 1.144
D7.83
2) $p^{3}-8$ factorises to give:
A $(p-2)^{3}$
B $(p-2)\left(p^{2}+2 p+4\right)$
C $(p-2)\left(p^{2}-2 p+4\right)$
D $(p-2)\left(p^{2}+4 p+4\right)$
3) If $f(x)=5-3 x-2 x^{2}$ then $f(-2)$ is equal to:
A 3
B -11
C 5
D - 7
4) The largest possible domain of $y=\sqrt{4-x^{2}}$ is
A All real numbers
B $x \leq 2$
C $-2 \leq x \leq 2$
D $x>-2$ and $x<2$
5) The value of $x$ is

A $60^{\circ}$
B $70^{\circ}$
C 50
D $65^{\circ}$
6) Which of the following has solutions 4 and -3 ?
A $x^{2}+x-12=0$
B $\quad x^{2}-x-12=0$
C $x^{2}-7 x+12=0$
D $x^{2}+7 x-12=0$
7) The solution for $x^{2}-49 \geq 0$ is
A $x \leq-7$ and $x \geq 7$
B $\quad x \geq-7$ and $x \geq 7$
C $x \leq-7$ and $x \leq 7$
D $\quad-7 \leq x \leq 7$
8) $(2 \sqrt{5}-1)^{2}$ is equal to
A 19
B11-2 $\sqrt{5}$
C $19-2 \sqrt{5}$
D $21-4 \sqrt{5}$
9) The perpendicular distance from the line $3 x-4 y+6=0$ to the point $(-1,-3)$ is
A $\frac{3}{5}$
B 3
C $\frac{4}{3}$
D 15
10) Which of the following graphs represent a function ?
A

B

C

D


## Blank Page

## Section II <br> Attempt Questions 11 to 16

Answer each question in separate writing booklets.
All necessary working should be shown in every question.

Question 11 (14 Marks)
a) Express $0.02 \dot{4}$ as a fraction in its simplest form.

2
b) Solve simultaneously

$$
\begin{aligned}
& 3 x-2 y=29 \\
& 4 x+5 y=8
\end{aligned}
$$

c) Solve $|3 x-8|<1$
d) Solve $\frac{x+1}{3}+\frac{x}{4}=5$
e) Simplify $\frac{x^{2}-144}{x^{2}+15 x+36} \div \frac{2 x^{2}-24 x}{(x+3)^{2}}$
f) Find the exact solution(s) to $4 x^{2}+12 x+1=0$ in simplest form. 3

Question 12 (13 Marks) Start a new booklet. Marks
a) Sketch the following showing all essential features
i) $x^{2}+y^{2}=9 \quad 2$
ii) $y=\frac{1}{x+3}$
iii) $\quad y=|x|+3$

2
iv) $y=3^{-x}$
b) Sketch the parabola $y=x^{2}-3 x-18$. Clearly showing the coordinates of the $x$ and $y$ intercepts and the vertex.
c) Show that $f(x)=x^{5}-16 x$ is an odd function.


The diagram shows the points $\mathrm{A}(1,0) \mathrm{B}(4,1)$ and $\mathrm{C}(-1,6)$ in the Cartesian plane.
Angle ABC is $\theta$.
Copy and trace the diagram into your writing booklet.
a) Show that C lies on the line $3 x+y=3$. 1
b) Find the gradient of $A B$.
c) Find the equation of $A B$.
d) Find the length of $A B$.
e) Show that AB and AC are perpendicular.
f) Find the area of $\triangle A B C$.
g) Find $\tan \theta$.
h) Find the equation of the circle with centre $A$ the passes through B.
i) The point $D$ is not shown on the diagram. The point $D$ lies on the line
$3 x+y=3$ between A and $\mathrm{C}, \mathrm{AD}=\mathrm{AB}$. Find the coordinates of D .
j) On your diagram shade the region satisfying the inequality $3 x+y \leq 3$.
a) Find the exact value of $\cos 150^{\circ}$
b) Solve each equation for $0^{0} \leq \theta \leq 360^{\circ}$
i) $\quad \cos ^{2} \theta=\frac{1}{2}$
ii) $\quad \tan 2 x=\sqrt{3}$
c) A ship sales 50 km from port A to port B on a bearing of $063^{\circ} \mathrm{T}$ then sails 130 km from port $B$ to port $C$ on a bearing of $296^{\circ} \mathrm{T}$.

i) Explain why $\angle A B C=53^{\circ}$. 2
ii) Find, correct to the nearest km, the distance of port A from port C .
iii) Find the bearing of port A from port C. Answer correct to the nearest minute.
d) Prove that $\tan \theta+\cot \theta=\sec \theta \operatorname{cosec} \theta$.
e) If $\cos \alpha=\frac{4}{5}$ and $\sin \alpha<0$, find $\tan \alpha$.
a) Find the value of $y$, giving reasons.

b) Find the size of each interior angle of a regular octagon.
c) Let $A D$ and $B E$ be the two altitudes of triangle $A B C$. Suppose that $A D=B E$
i) Prove that $\triangle A B E \equiv \triangle B A D$.
ii) Hence prove that $\triangle A B C$ is isosceles.


## Question 15 continued.

ii) Hence find YN .


Question 16 (21 Marks)_
Start a new booklet.
a) Differentiate the following with respect to $x$
i) $y=5 x^{4}-7 x^{2}+8 \quad$ 1
ii) $y=\frac{3 x^{4}-5 x^{2}}{x}$
iii) $y=\frac{1}{x \sqrt{x}}$
v) $y=\frac{6}{x^{4}}$
vi) $y=(3 x+4)^{5}$
vii) $\quad y=x(3-2 x)^{4}$
viii) $y=\frac{x^{2}+5}{x-2}$
ix) $y=x \sqrt{1-x^{2}}$, answer without fractional or negative indices
b) A function $f(x)=x^{2}+4 x-12$ has a tangent with a gradient of -6 at the point P on the curve. Find the coordinates of P .
c) Find the equation of the normal to the curve $y=x^{2}-8 x+7$ at the point ( $3,-8$ ).

## End of paper

Year 11
Mathematias Peliminary Exam

Section 1

1. $\frac{8.964}{\sqrt{61.328}} \doteqdot 1.1446493$
$=1.14$ to $3 \operatorname{sig} f i g$ (B)
2. $p^{3}-8=p^{3}-2^{3}$

$$
\begin{equation*}
=(p-2)\left(p^{2}+2 p+4\right) \tag{B}
\end{equation*}
$$

3. 

$$
\begin{align*}
f(x) & =5-3 x-2 x^{2} \\
f(-2) & =5-3(-2)-2(-2)^{2} \\
& =5+6-8 \\
& =3 \tag{A}
\end{align*}
$$

4. $y=\sqrt{4-x^{2}}$

$\therefore$ Domain $-2 \leqslant x \leqslant 2$
5. $x=70$
cointerior angles adt up to $180^{\circ}$ ARIICD
6. $x=4,-3$

$$
\begin{align*}
\therefore(x-4)(x+3) & =0 \\
x^{2}-x-12 & =0 \tag{B}
\end{align*}
$$

7. $x^{2}-49 \geqslant 0$


$$
\begin{equation*}
\therefore x \leqslant-7, x \geqslant 7 \tag{A}
\end{equation*}
$$

8. $(2 \sqrt{5}-1)^{2}=(2 \sqrt{5}-1)(2 \sqrt{5}-1)$

$$
=4 \times 5-2 \sqrt{5}-2 \sqrt{5}+1
$$

$$
\begin{equation*}
=21-4 \sqrt{5} \tag{D}
\end{equation*}
$$

9. $3 x-4 y+6=0 \quad(-1,-3)$

$$
\begin{align*}
d & =\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}} \\
& =\frac{|3 x-1-4 \times-3+b|}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{|-3+12+b|}{5} \\
& =\frac{15}{5} \\
& =3 \tag{B}
\end{align*}
$$

(10) A graph represents a function if a vertical line cuts the graph once

Section 2
Question 11
a) Let $x=0.024$

$$
=0.024444 \ldots
$$

$1000=24 \cdot 444 \ldots$

$$
100 x=2.444 \ldots
$$

$$
900=22
$$

$$
x=\frac{22}{900}
$$

$$
=\frac{11}{450}
$$

$\therefore 0.024=\frac{11}{450}$
b)

$$
\begin{align*}
& 3 x-2 y=29  \tag{1}\\
& 4 x+5 y=8 \tag{3}
\end{align*}
$$

(1) $\times 4$

$$
12 x-8 y=116
$$

(2) $\times 3$
(3) (4)

$$
\begin{aligned}
&-23 y=92 \\
& y=-4 \\
& 3 x-2 y=29 \\
& 3 x-2(-4)=29 \\
& 3 x=21 \\
& x=7 \\
& \therefore x=7, y=-4
\end{aligned}
$$

C)

$$
\begin{array}{r}
|3 x-8|<1 \\
-1<3 x-8<1 \\
7<3 x<9 \\
\frac{7}{3}<x<3
\end{array}
$$

d) $\frac{x+1}{3}+\frac{x}{4}=5$

$$
\begin{aligned}
4(x+1)+3 x & =60 \\
4 x+4+3 x & =60 \\
7 x & =56 \\
x & =8
\end{aligned}
$$

e) $\frac{x^{2}-144}{x^{2}+15 x+36} \div \frac{2 x^{2}-24 x}{(x+3)^{2}}$

$$
\begin{aligned}
& =\frac{(x-12)(x+12)}{(x+12)(x+3)} \times \frac{(x+3)(x+3)}{2 x(x-12)} \\
& =\frac{x+3}{2 x}
\end{aligned}
$$

f)

$$
\begin{aligned}
& 4 x^{2}+12 x+1=0 \\
& a=4, b=12, c=1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \\
& =\frac{-12 \pm \sqrt{12^{2}-4 \times 4 \times 1}}{2(4)} \\
&
\end{aligned} \begin{aligned}
8 & \frac{-12 \pm \sqrt{128}}{8} \\
& =\frac{-12 \pm 8 \sqrt{2}}{8} \\
& =\frac{4(-3 \pm 2 \sqrt{2})}{8} \\
& =\frac{-3 \pm 2 \sqrt{2}}{2}
\end{aligned}
$$

Question 12
a) 4)

(II)

III)


b) $y=x^{2}-3 x-18$
$s$-intercepts $\Rightarrow y=0$
$x^{2}-3 x-18=0$
$(x-6)(x+3)=0$

$$
x=6,-3
$$

$\therefore x$ intercepts are $(6,0)(-3,0)$
$y$-intercept $\Rightarrow x=0$

$$
\begin{aligned}
y & =x^{2}-3 x-18 \\
& =-18
\end{aligned}
$$

$\therefore y$-intercept is $(0,-18)$
equation of the axis of symmetry

$$
\begin{aligned}
x & =\frac{-b}{2 a} \\
x & =\frac{-3}{2} \\
x & =\frac{3}{2} \\
y & =x^{2}-3 x-18 \text { when } x=\frac{3}{2} \\
& =\left(\frac{3}{2}\right)^{2}-3\left(\frac{3}{2}\right)-18 \\
& =-20 \frac{1}{4} \\
\therefore \text { vertex } & \text { is }\left(1 \frac{1}{2},-20 \frac{1}{4}\right)
\end{aligned}
$$


a)

$$
\begin{aligned}
3 x+y & =3 \\
4 H s & =3 x+y \\
& =3(-1)+b \\
& =3 \\
& =\text { RUS }
\end{aligned}
$$

$$
c \text { is }(-1, \theta)
$$

$\therefore$ C lies on the line $3 x+y=3$
b)

$$
\begin{aligned}
m_{A B} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad A(1,0) B(4,1) \\
& =\frac{1-0}{4-1} \\
& =\frac{1}{3}
\end{aligned}
$$

$\therefore$ gradient $A B$ is $\frac{1}{3}$

$$
\begin{aligned}
\Rightarrow y-y_{1} & =m\left(x-x_{1}\right) \quad m=\frac{1}{3} A(1,0) \\
y-0 & =\frac{1}{3}(x-1) \\
y & =\frac{1}{3} x-\frac{1}{3}
\end{aligned}
$$

c)

$$
\begin{aligned}
f(x) & =x^{5}-16 x \\
f(-x) & =(-)^{5}-16(-x) \\
& =-x^{5}+16 x \\
-f(-x) & =-\left(-x^{5}+16 x\right) \\
& =x^{5}-16 x
\end{aligned}
$$

As $f(\Leftrightarrow)=-f(-x)$ the function is odd.

Question 13

d)

$$
\begin{aligned}
d_{A B} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(4-1)^{2}+(1-0)^{2}} \\
& =\sqrt{10}
\end{aligned}
$$

$\therefore$ length $A B$ is $\sqrt{10}$ units
c) $\quad m_{A B}=\frac{1}{3}$ from part (b)

$$
\begin{aligned}
m_{A C} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad A(1,0) \subset(-1,6) \\
& =\frac{6-0}{-1-1} \\
& =-3 \\
m_{A B} \times m_{A C} & =\frac{1}{3} \times-3 \\
& =-1
\end{aligned}
$$

$\therefore A B \perp A C$
f)

$$
\begin{aligned}
d_{A C} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(-1-1)^{2}+(6-0)^{2}} \\
& =\sqrt{40} \\
& =2 \sqrt{10}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \times A C \times A B \\
& =\frac{1}{2} \times 2 \sqrt{10} \times \sqrt{10} \\
& =10
\end{aligned}
$$

$\therefore$ Area $\triangle A B C$ is loumits'
9)

$$
\begin{aligned}
\tan \theta & =\frac{A C}{A B} \\
& =\frac{2 \sqrt{10}}{\sqrt{10}} \\
& =2
\end{aligned}
$$

h)

$$
\begin{aligned}
& (x-h)^{2}+(y-k)^{2}=r^{2} \\
& \text { centre } A(1,0) \quad r=\sqrt{10} \\
& \therefore(x-1)^{2}+y^{2}=10
\end{aligned}
$$

-) Length $A D=$ length $A B$

$$
=\sqrt{10}
$$

length $A C=2 \sqrt{10}$
$\therefore D$ is the midpoint of $A C$

$$
\begin{aligned}
D & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{1-1}{2}, \frac{0+6}{2}\right) \\
& =(0,3)
\end{aligned}
$$

J) test $(0,0)$ in $3 x+y \leqslant 3$ $0 \leqslant 3$ tree
$\therefore$ shade side of line containing $(0,0)$ see previous page

Question 14
a)

$$
\begin{aligned}
\cos 150^{\circ} & =-\cos 30^{\circ} \\
& =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

b) 1

$$
\begin{array}{ll}
\cos ^{2} \theta=\frac{1}{2} & \left.\quad \frac{s}{\top}\right|^{2} \\
\cos \theta= \pm \frac{1}{\sqrt{2}} &
\end{array}
$$

Related angle $\cos 45^{\circ}=\frac{1}{\sqrt{2}}$

$$
\begin{array}{r}
\therefore \theta=45^{\circ}, 180-45^{\circ}, 180+45^{\circ} \\
360^{\circ}-45^{\circ} \\
\theta=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}
\end{array}
$$

(II) $\tan 2 \theta=\sqrt{3} \quad 0 \leqslant \theta \leqslant 360$

$$
0 \leqslant 2 \theta \leqslant 720
$$

Related angle tan $60^{\circ}=\sqrt{3} \frac{51 A^{2}}{T / c^{2}}$

$$
\begin{aligned}
& \therefore 2 \theta= 60^{\circ}, 180^{\circ}+60^{\circ}, 360^{\circ}+60^{\circ} \\
& 360^{\circ}+180^{\circ}+60 \\
& 2 \theta= 60^{\circ}, 240^{\circ}, 420^{\circ}, 600^{\circ} \\
& \theta=30^{\circ}, 120^{\circ}, 210^{\circ}, 300^{\circ}
\end{aligned}
$$

c)

$N, B C=64^{\circ}$ angles about a point add up to $360^{\circ}$
$N_{1} B A=117^{\circ}$ cointerior angles add up to $180^{\circ} N_{1} B \| N_{2}$ a
$\therefore A B C=53^{\circ}$ by subtraction
ii)

$$
\begin{aligned}
b^{2} & =a^{2}+c^{2}-2 a c c o \\
& =130^{2}+50^{2}-2 \times 130 \times 50 \cos 53 \\
& =11576.4047 \\
b & \doteq 107.5937019
\end{aligned}
$$

$\therefore$ distance is 108 km to nearest km
iII)

$$
\begin{aligned}
\frac{\sin c}{c}= & \frac{\sin B}{b} \\
\frac{\sin c}{50} & =\frac{\sin 53}{b} \\
\sin c & =\frac{50 \sin 53^{\circ}}{b} \\
c & =21^{\circ} 47^{\prime} \text { to nearest }
\end{aligned}
$$ min

$\therefore$ Bearing is $\left(116+21^{\circ} 47^{\prime}\right) T$

$$
=137^{\circ}+1^{1} \mathrm{~T}
$$

d) $\tan \theta+\cot \theta=\sec \theta \operatorname{cosec} \theta$

$$
\begin{aligned}
L \cdot H S & =\tan \theta+\cot \theta \\
& =\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \\
& =\frac{1}{\cos \theta \sin \theta} \\
& =\sec \theta \operatorname{cocec} \theta \\
& =R . H S
\end{aligned}
$$

$$
\therefore \tan \theta+\cot \theta=\sec \theta \operatorname{cosec} \theta
$$

$$
\begin{aligned}
& \cos \alpha=\frac{4}{5} \\
& \sin \alpha<0 \\
& \frac{5}{4}
\end{aligned}
$$

$$
\frac{s A V}{T C V}
$$

$$
\therefore \tan \alpha=-\frac{3}{4}
$$

Question 15
a)

draw aline parallel to the other 2
$x=46$ alternate angles are equal if the lines are parallel
$t=54$ alternate angles are equal if the lines are parallel $y=360-(46+54)$ angles about

$$
=2 b 0
$$ a point add up to $360^{\circ}$

b)

$$
\begin{aligned}
\text { Interior angle } & =\frac{(n-2) \times 180}{n} n=8 \\
& =\frac{(8-2) \times 180}{8} \\
& =135^{\circ}
\end{aligned}
$$

$\therefore$ Each interior angle is $135^{\circ}$
c)
In $\triangle A B E$ and $\triangle B A D$
$A B$ is common
$B E=A D$ given
$\hat{A E B}=\hat{A D B}$ given
$\therefore \triangle A B E \equiv \triangle B A D$ RHo
$\hat{E A B}=\hat{D B A}$
$\begin{aligned} & \text { corresponding } \\ & \text { angles of congriven } \\ & \text { trianglesare equal }\end{aligned}$
$\therefore \triangle A B C$ is isosceles
as it has 2 equal
angles
d)

1)


In $\triangle L M N$ and $\triangle y m x$

$$
m \text { is common }
$$

$$
\frac{L m}{m y}=\frac{32}{24}=\frac{4}{3}
$$

$$
\frac{L N}{4 x}=\frac{40}{30}=\frac{4}{3}
$$

$\therefore \triangle L M N \| I I \triangle M x$
two pairs of corresponding angles are in proportion and the included angles are equal.
(i) $\frac{L N}{Y X}=\frac{N M}{M X}$ corresponding

$$
\frac{40}{30}=\frac{24+x}{21} \text { similar triangles } \text { are in proportion }
$$

$$
30(24+x)=40 \times 21
$$

$$
24+x=\frac{40 \times 21}{30}
$$

$$
24+x=28
$$

$$
x=4
$$

$\therefore \quad Y N=4$

Question 16
a)
(1) $y=5 x^{4}-7 x^{2}+8$

$$
\frac{d y}{d x}=20 x^{3}-14 x
$$

(in)

$$
\begin{aligned}
y & =\frac{3 x^{4}-5 x^{2}}{x} \\
& =\frac{x\left(3 x^{3}-5 x\right)}{x} \\
& =3 x^{3}-5 x \\
\frac{d y}{d x} & =9 x^{2}-5
\end{aligned}
$$

(III)

$$
\begin{aligned}
y & =\frac{1}{x \sqrt{x}} \\
& =\frac{1}{x^{3 / 2}} \\
& =x^{-\frac{3}{2}} \\
\frac{d y}{d x} & =-\frac{3}{2} x^{-\frac{5}{2}} \\
& =\frac{-3}{2 \sqrt{x^{5}}} \\
& =\frac{-3}{2 x^{2} \sqrt{x}}
\end{aligned}
$$

(IV)

$$
\begin{aligned}
y & =\frac{6}{x+4} \\
& =6 x^{-4} \\
\frac{d y}{d x} & =-24 x^{-5} \\
& =\frac{-24}{x^{5}}
\end{aligned}
$$

v) $y=(3 x+4)^{5}$

$$
\begin{aligned}
\frac{d y}{d x} & =5(3 x+4)^{4} \times 3 \\
& =15(3 x+4)^{4}
\end{aligned}
$$

v) $y=x(3-2 x)^{4}$

$$
=u v
$$

where

$$
\begin{aligned}
u & =x \\
\frac{d u}{d x} & =1 \quad v=(3-2 x)^{4} \\
\frac{d y}{d x} & =v \frac{d v}{d x}=-8(3-2 x)^{3} \\
& =(3-2 x)^{4}-8 \frac{d v}{d x} \\
& =(3-2 x)^{3}[3-2 x-8-2 x)^{3} \\
& =(3-2 x)^{3}(3-10 x)
\end{aligned}
$$

vil)

$$
\begin{aligned}
y & =\frac{x^{2}+5}{x-2} \\
& =\frac{y}{v}
\end{aligned}
$$

where

$$
\begin{aligned}
& v=x^{2}+5 \quad v=x-2 \\
& \frac{d u}{d x}=2 x \quad \frac{d v}{d x}=1 \\
& \frac{d y}{d x}=\frac{v^{\frac{d u}{d x}-v \frac{d v}{d x}}}{v^{2}} \\
&=\frac{2 x(x-2)-\left(x^{2}+5\right)}{(x-2)^{2}} \\
&=\frac{2 x^{2}-4 x-x^{2}-5}{(x-2)^{2}} \\
&=\frac{x^{2}-4 x-5}{(x-2)^{2}} \\
&=\frac{(x-5)(x+1)}{(x-2)^{2}}
\end{aligned}
$$

VIII)

$$
\begin{aligned}
y & =x \sqrt{1-x^{2}} \\
& =u v
\end{aligned}
$$

where $u=x$

$$
v=\left(1-x^{2}\right)^{\frac{1}{2}}
$$

$$
\frac{d u}{d x}=1
$$

$$
\frac{d v}{d x}=\frac{1}{2}\left(1-x^{2}\right)_{x-22}^{-\frac{1}{2}}
$$

$$
=-x\left(1-x^{2}\right)^{-\frac{1}{2}}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =v \frac{d u}{d x}+u \frac{d v}{d x} \\
& =\left(1-x^{2}\right)^{\frac{1}{2}}-x^{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \\
& =\left(1-x^{2}\right)^{-\frac{1}{2}}\left[1-x^{2}-x^{2}\right] \\
& =\left(1-x^{2}\right)^{-\frac{1}{2}}\left(1-2 x^{2}\right) \\
& =\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}
\end{aligned}
$$

b) $f(x)=x^{2}+4 x-12 \quad f^{\prime}(x)=-6$

$$
f^{\prime}(x)=2 x+4
$$

But $f^{\prime}(x)=-6$

$$
\begin{aligned}
\therefore 2 x+4 & =-6 \\
2 x & =-10 \\
x & =-5
\end{aligned}
$$

when $x=-5$

$$
\begin{aligned}
f(x) & =x^{2}+4 x-12 \\
f(-5) & =(-5)^{2}+4(-5)-12 \\
& =25-20-12 \\
& =-7
\end{aligned}
$$

$\therefore P$ is the point $(-5,-7)$
C)

$$
\begin{aligned}
y & =x^{2}-8 x+7 \\
\frac{d y}{d x} & =2 x-8 \text { at } x-3 \\
& =2(3)-8 \\
& =-2
\end{aligned}
$$

$\therefore$ gradient of tangent is -2 For perpendicular lines

$$
m_{1} m_{2}=-1
$$

$\therefore$ gradient of normal is $\frac{1}{2}$

$$
\begin{aligned}
& y-y_{1}=m(x-x) \quad(3,-8) \\
& y+8=\frac{1}{2}(x-3) \\
& 2 y+16=x-3 \\
& x-2 y-19=0
\end{aligned}
$$

