Section I

Multiple Choice 10 Marks

Use the multiple choice answer sheet for Questions 1 – 10

1. The solution of the inequation $1 - 3x \le -x$ is **C.** $x \ge \frac{1}{2}$ **D.** $x < -\frac{1}{2}$ **A.** $x < \frac{1}{2}$ **B.** $x \ge -\frac{1}{2}$ **2.** $\sqrt{x^5}$ can be written as **A.** $x^{\frac{2}{5}}$ **B.** $x^{\frac{5}{2}}$ **C.** $\sqrt[5]{x^2}$ **D.** $x^{5.2}$ **3.** 0.000006053 in scientific notation is **A.** 6.053×10^{-6} **B.** 6053×10^{4} **C.** 6.053×10^{6} **D.** 6053×10^{-6} **4.** Factorising $x^3 - 27y^3$ becomes **A.** $(x-3y)(x^2+3xy+9y^2)$ **B.** $(x-3y)^3$ **B.** C. $(x^2 - 3)(x + 9y^2)$ **D.** $(x^2 - 3y^2)(x + 9y)$ 5. $(3\sqrt{7} + 2\sqrt{3})(3\sqrt{7} - 2\sqrt{3})$ is equal to

A. 51 **B.** 75 **C.** $51 + 4\sqrt{3}$ **D.** 63

Newington College

- **A.** 2x + 3y 19 = 0**B.** 2x - 3y - 19 = 0
- **C.** 3x + 2y + 4 = 0 **D.** 3x + 2y + 4 = 0

Newington College

Year 11 Mathematics

2

2

Section II

Attempt Questions 11 to 16

Answer each question in separate writing booklets.

All necessary working should be shown in every question

Question 11	14 Marks	Start a new booklet	Marks
(a) Simpli	fy $2\sqrt{75} - 3$	$3\sqrt{48}$	2
(b) Solve	$x^2 = 5x$		2

(c) Evaluate, correct to 3 significant figures

$$\frac{6.2^5 - 5.2^4}{\sqrt{18} - 4 \times 6^{\frac{1}{3}}}$$

(d) Solve
$$|2x+1| \ge 5$$
 and graph your solution on the number line **3**

(e) Simplify
$$\frac{2}{m^2 - 4} - \frac{3}{m + 2}$$
 3

(f) Solve simultaneously

$$5p - t = -28$$
$$16p - 5t = -14$$

Year 11 Mathematics

Preliminary Examination 2013

Question 12 13 Marks Start a new booklet Marks

- (a) Sketch the following, showing all essential features
 - (*i*) 2x 4y 1 = 0
 - $(ii) \qquad y = \sqrt{16 x^2}$
 - $(iii) \quad y = -\frac{4}{1+x}$

$$(iv) \quad y = x^3 + 8$$

(b) Shade the region in the Cartesian plane for which

y < x - 2, $y \ge 0$ and $x \ge 6$ hold simultaneously.

(c) Find the centre and radius of the circle $x^2 - 2x + y^2 + 10y + 22 = 0 .$

2

3

In the diagram, OABC is a trapezium with OA || CB. The coordinates of O, A and B are (0, 0), (-1, 1) and (4, 6) respectively.

(i) Calculate the length of OA.	2
(ii) Write down the gradient of the line OA.	1
(iii) What is the size of $\angle AOC$?	1
(iv) Find the equation of the line BC, and hence find the coordinates of C.	3
(v) Show that the perpendicular distance from O to the line BC is $5\sqrt{2}$.	2
(vi) Hence or otherwise, calculate the area of the trapezium OABC.	2
(vii) Find the equation of the line that passes through O and is perpendicular to the line BC.	2

(b) Sketch $y = \sin x$ in the domain $0^0 \le x \le 360^0$. Show all essential features. **1**

(c) Find the exact length of AB.

(a) Find $\cos \theta$ if $\csc \theta = 4$ for $90^{\circ} \le \theta \le 180^{\circ}$

(d) Solve each equation for $0^0 \le \theta \le 360^0$. Correct answers to the nearest minute.

(i)
$$\cos\theta = -\frac{3}{4}$$

(ii)
$$\cot \theta = 4$$
 2

(e) Find the exact value of $\sin 225^{\circ}$

2

2

(f)

Question 14 continued

The diagram shows a point P which is 30 km due west of the point Q. The point R is 12 km from P and has a bearing from P of 070° .

(i) Find the distance of R from Q, correct to 1 decimal place. 2

(ii) Find the bearing of R from Q, correcting your answer to the nearest degree. 2

(g) Prove
$$\sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta}$$
 2

Question 15 13 Marks

Start a new booklet

(a) Find the value of x, giving reasons.

(b) Find the length of YW, correct to 1 decimal place.

2

(c)

In the diagram, ABCD is a square. The points P, Q and R lie on AB, BC and CD respectively, such that AP = BQ = CR.

(i) Prove the triangles PBQ and QCR are congruent	3
(ii) Prove $\angle PQR$ is a right angle	2
	Question 15 continues on next page.

Marks

Question 15 continued

(d) Given the following diagram,

Marks

(i) Prove $\Delta XYZ \parallel \mid \Delta VWZ$	3
(ii) Hence find the length of ZY	1

QUESTION 1621 MarksStart a new bookletMarks

(a) Differentiate the following with respect to x

(i)
$$y = 3 - 2x^2 - 7x^4$$
 2

(ii)
$$y = 5\sqrt{x} - \frac{x^2}{2}$$
 2

(iii)
$$y = (1 - 2x)(1 + 3x)$$
 2

(iv)
$$y = \frac{4x - 1}{1 - x}$$
 2

(v)
$$y = (8x^2 + 4x)^3$$
 2

(vi)
$$y = 2x\sqrt[3]{x-5}$$
 leave your answer without a fractional or negative index 2

(vii)
$$y = (3x-1)(2-3x)^4$$
 2

Question 16 continues on next page.

3

QUESTION 16 continued Marks (b) Differentiate $f(x) = x^2 - 2x$ from 1st principles and find the gradient of the tangent to the curve at x = 1

(c) Differentiate $y = x^2 + bx + c$ and hence find *b* and *c* given that the line 3

3x + y - 5 = 0 is a normal to the curve at the point (3, -1)

END OF PAPER

YEAR II MATHEMATIC	S PRELIMINARY FINAL EXAMINATION
Some	2013
SECTION 1 (10 MARKS)	SECTION I
1. スプラン C	QUESTION 11. (14 MARKS)
$2. \chi^{\frac{5}{2}} B$	(a) $2\int_{25}f_{3} - 3\int_{16}f_{3} = 10\int_{3}^{7} - 12\int_{3}^{7}$
3. 6.053×10-6 A	$= -2\sqrt{3}$ 1
4. $(n-3\gamma)(n^2+3n\gamma+9\gamma^2)$ A	(b) $x^{2} - 5n = 0$ x(x-5) = 0 x = 0 = 2 = n = 5 $\frac{1}{2} = \frac{1}{2}$
5. 51 A	(c) - 2786.056774
b. 1 D	= -2790 y
7. $\frac{a+b+2}{a+b}$ A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8. 1- <u>13</u> B	$\begin{array}{c} \chi \not\in -3 & \gamma \\ \hline \hline \\ \hline -3 & \circ & 2 & \gamma \end{array}$
9. n=12 D	$\frac{(e)}{(m+2)(m-2)} = \frac{3(m-2)}{(m+2)(m-2)} \frac{1}{2}$
10, 2x-3y-19=0B.	$= \frac{2 - 3m + 6}{(m+2)(m-2)}$ $= \frac{8 - 3m}{(m+2)(m-2)}$
	(f) $t = 5p + 28 - 0$ <u>$16p - 5t = -14$</u> Sub () into (2)
	$ \begin{array}{c} 16p - 5(Sp + 28) = -14 \\ 16p - 2Sp - 140 = -14 \\ -9p = 126 \\ p = -14 \\ \end{array} $

9-

.

(c) $\chi^2 - 2\chi + \gamma^2 + 10\gamma = -22$ $\chi^2 - 2\pi + 1 + \gamma^2 + 10\gamma + 25 = -22 + 1 + 25$ $(\chi - 1)^2 + (\gamma + 5)^2 = 4$ Centre (1, -5) Rodus = 2 1

. .

٦

1

۱

QJESTION 14 (16 MARKS)
(a)
$$\csc \Theta = 4$$

 $\frac{1}{5in\Theta} = 4$
 $\sin \Theta = \frac{1}{4}$
 $\frac{1}{1}$
 $\frac{1}{1}$
 $\sin \Theta = \frac{1}{4}$
 $\frac{1}{1}$
 $\frac{1}{15}$
 $(2nd q - 2nd)$
 $\frac{1}{1}$

- (c) $\tan 30^{\circ} = \frac{3}{AB} + \frac{1}{AB}$ $AB = 3 + \tan 30^{\circ} = \frac{3}{7} + \frac{1}{73} = \frac{3}{7} + \frac{1}{73} = \frac{3}{7} + \frac{1}{73} = \frac{1}{7}$
- (d) (i) $\cos \Theta = -\frac{3}{4}$ Basic angle: $\Theta = 41^{\circ}25^{\circ}$ 2nd Quad: 138° 35' $\frac{1}{2}$ 3rd Quad: 221° 25' $\frac{1}{2}$ (ii) $\frac{1}{100} = 4$ $\tan \Theta = \frac{1}{4}$
 - $1st Q_{-AD} : \Theta = 14^{\circ} 2'$ $3RD Q_{-AD} : \Theta = 194^{\circ} 2'$

(e)
$$\sin 225^\circ = \sin (180 + 45^\circ)$$

= $-\sin 45^\circ$
= $-\frac{1}{52}$
= $-\frac{1}{2}$

$$(f_{12})^{1}RQ^{2} = 12^{2} + 30^{2} - 2.12.30.60520^{2}$$

$$RQ = \sqrt{12^{2} + 30^{2} - 2.12.30.60520^{2}}$$

$$= 19.168$$

$$= 19.2 \text{ cm} \qquad 1$$

$$(i') \qquad SinQ = Sin 20^{2}$$

$$I = 0.213$$

$$Q = 12^{2} 21^{2}$$

$$Beorng is 270^{2} + 12^{2}21^{2}$$

$$= 282^{2} 21^{2} \qquad 1$$

$$\left(\frac{282^{2} 21^{2}}{12} + \frac{5inQ}{RQ} + \frac{5inQ}{22}\right)$$

$$= 12^{2}22^{2} \qquad Beoring \qquad 1$$

$$(g) \qquad LHS = 1 + 5inQ$$

$$= \frac{1 + \sin \theta}{1 + \sin \theta} = \frac{1}{1 + \sin \theta}$$

$$=$$
 RHS .

6. 54

(b)
$$f(x) = x^{2} - 2x$$

$$F(x+h) = (x+h)^{2} - 2(x+h)$$

$$= x^{2} + 2xh + h^{2} - 2x - 2h$$

$$f'(x) = \lim_{h \to 0} x^{2} + 2xh + h^{2} - 2x - 2h - (x^{2} - 2x)$$

$$= \lim_{h \to 0} \frac{2xh + h^{2} - 2h}{h}$$

$$= \lim_{h \to 0} 2x + h - 2$$

$$h - 20$$

$$= 2x - 2$$

$$Gradient = 2x + h - 2$$

$$= 0$$
(c) $Y = x^{2} + bx + c$

$$\frac{d7}{dx} = 2x + b$$

$$\lim_{h \to 0} \frac{1}{3x} = \frac{1}{3}$$

$$USE(3, -1) \quad and \quad \frac{dy}{3x} = \frac{1}{3}$$

$$\int_{1}^{3} = 2x + b$$

$$\int_{1}^{3} = 2x + b$$

$$\int_{1}^{3} = 2x + b$$

Sub into griginal $-1 = 3^2 - 5_3^2 \times 3 + C$ $= 7 \frac{1}{2}$