Section I

Multiple Choice

10 Marks

Use the multiple choice answer sheet for Questions 1-10

1. The solution of the inequation $1-3 x \leq-x$ is
A. $x<\frac{1}{2}$
B. $x \geq-\frac{1}{2}$
C. $x \geq \frac{1}{2}$
D. $x<-\frac{1}{2}$
2. $\sqrt{x^{5}}$ can be written as
A. $x^{\frac{2}{5}}$
B. $x^{\frac{5}{2}}$
C. $\sqrt[5]{x^{2}}$
D. $x^{5.2}$
3. 0.000006053 in scientific notation is
A. 6.053×10^{-6}
B. 6053×10^{4}
C. 6.053×10^{6}
D. 6053×10^{-6}
4. Factorising $x^{3}-27 y^{3}$ becomes
A. $(x-3 y)\left(x^{2}+3 x y+9 y^{2}\right)$
B. $(x-3 y)^{3}$
B. C. $\left(x^{2}-3\right)\left(x+9 y^{2}\right)$
D. $\left(x^{2}-3 y^{2}\right)(x+9 y)$
5. $(3 \sqrt{7}+2 \sqrt{3})(3 \sqrt{7}-2 \sqrt{3})$ is equal to
A. 51
B. 75
C. $51+4 \sqrt{3}$
D. 63
6. The gradient function of $f(x)=\sqrt{x}$ is
A. $\frac{1}{2} x$
B. $\frac{2}{\sqrt{x}}$
C. $\frac{\sqrt{x}}{2}$
D. $\frac{1}{2 \sqrt{x}}$
7. $1+\frac{2}{a+b}=$
A. $\frac{a+b+2}{a+b}$
B. $\frac{3}{a+b}$
C. 3
D. $\frac{2}{a+b}$
8. $\frac{2-\tan 60^{\circ}}{\sec ^{2} 45^{\circ}}$ in exact form is
A. $2 \sqrt{3}$
B. $1-\frac{\sqrt{3}}{2}$
C. $-\frac{1}{\sqrt{3}}$
D. $\frac{2-\sqrt{3}}{\sqrt{2}}$
9. The number of sides of a regular polygon with exterior angles of 30° is
A. 6
B. 8
C. 10
D. 12
10. The equation of the line that passes through ($2,-5$) and is parallel to the line $2 x-3 y+1=0$ can be expressed as
A. $2 x+3 y-19=0$
B. $2 x-3 y-19=0$
C. $3 x+2 y+4=0$
D. $3 x+2 y+4=0$

Section II

Attempt Questions 11 to 16

Answer each question in separate writing booklets.
All necessary working should be shown in every question

Question 1114 Marks Start a new booklet

(a) Simplify $2 \sqrt{75}-3 \sqrt{48} \quad 2$
(b) Solve $x^{2}=5 x$
(c) Evaluate, correct to 3 significant figures

$$
\frac{6.2^{5}-5.2^{4}}{\sqrt{18}-4 \times 6^{\frac{1}{3}}}
$$

(d) Solve $|2 x+1| \geq 5$ and graph your solution on the number line
(e) Simplify $\frac{2}{m^{2}-4}-\frac{3}{m+2}$
(f) Solve simultaneously

$$
\begin{aligned}
& 5 p-t=-28 \\
& 16 p-5 t=-14
\end{aligned}
$$

(a) Sketch the following, showing all essential features

8
(i) $2 x-4 y-1=0$
(ii) $y=\sqrt{16-x^{2}}$
(iii) $y=-\frac{4}{1+x}$
(iv) $y=x^{3}+8$
(b) Shade the region in the Cartesian plane for which
$y<x-2, y \geq 0$ and $x \geq 6$ hold simultaneously.
(c) Find the centre and radius of the circle

Question 1313 Marks

In the diagram, $O A B C$ is a trapezium with $O A \| C B$. The coordinates of O, A and B are $(0,0),(-1,1)$ and $(4,6)$ respectively.
(i) Calculate the length of OA. 2
(ii) Write down the gradient of the line OA.
(iii) What is the size of $\angle A O C$?
(iv) Find the equation of the line $B C$, and hence find the coordinates of C.
(v) Show that the perpendicular distance from O to the line $B C$ is $5 \sqrt{2}$.
(vi) Hence or otherwise, calculate the area of the trapezium OABC.
(vii) Find the equation of the line that passes through O and is perpendicular to the line $B C$.

Question 1416 Marks
 Start a new booklet
 Marks

(a) Find $\cos \theta$ if $\operatorname{cosec} \theta=4$ for $90^{\circ} \leq \theta \leq 180^{\circ}$
(b) Sketch $y=\sin x$ in the domain $0^{0} \leq x \leq 360^{\circ}$. Show all essential features.
(c) Find the exact length of AB.

(d) Solve each equation for $0^{0} \leq \theta \leq 360^{\circ}$. Correct answers to the nearest minute.
(i) $\cos \theta=-\frac{3}{4}$
(ii) $\cot \theta=4$
(e) Find the exact value of $\sin 225^{\circ}$

Question 14 continued

(f)

The diagram shows a point P which is 30 km due west of the point Q . The point R is 12 km from P and has a bearing from P of 070°.
(i) Find the distance of R from Q , correct to 1 decimal place.
(ii) Find the bearing of R from Q , correcting your answer to the nearest degree.
(g) Prove $\sec \theta+\tan \theta=\frac{1+\sin \theta}{\cos \theta}$
(a) Find the value of x, giving reasons.

(b) Find the length of YW, correct to 1 decimal place.

(c)

Not to scale

In the diagram, $A B C D$ is a square. The points P, Q and R lie on $A B, B C$ and $C D$ respectively, such that $A P=B Q=C R$.
(i) Prove the triangles PBQ and QCR are congruent
(ii) Prove $\angle P Q R$ is a right angle

Question 15 continued

(d) Given the following diagram,

(i) Prove $\triangle X Y Z||\mid \Delta V W Z \quad 3$
(ii) Hence find the length of $Z Y$

QUESTION 1621 Marks
 Start a new booklet
 Marks

(a) Differentiate the following with respect to x
(i) $y=3-2 x^{2}-7 x^{4}$

2
(ii) $y=5 \sqrt{x}-\frac{x^{2}}{2}$

2
(iii) $y=(1-2 x)(1+3 x)$

2
(iv) $y=\frac{4 x-1}{1-x}$

2
(v) $y=\left(8 x^{2}+4 x\right)^{3}$
(vi) $y=2 x \sqrt[3]{x-5}$ leave your answer without a fractional or negative index
(vii) $\quad y=(3 x-1)(2-3 x)^{4}$

QUESTION 16 continued

Marks
(b) Differentiate $f(x)=x^{2}-2 x$ from $1^{\text {st }}$ principles and find the gradient of the tangent to the curve at $x=1$.
(c) Differentiate $y=x^{2}+b x+c$ and hence find b and c given that the line

YEAR II MATHEMATICS PRELIMINARY FINAL EXAM,NATION
SOLUTIO,OS
2013

SECTIOM 1 (10 MARKS)

1. $x \geqslant \frac{1}{2} \quad<$
2. $x^{\frac{5}{2}} \quad B$
3. $6.053 \times 10^{-6} \mathrm{~A}$
4. $(x-3 y)\left(x^{2}+3 x y+9 y^{2}\right.$

A
5. $51 \quad A$
6. $\frac{1}{2 \sqrt{x}}$
7. $\frac{a+b+2}{a+b} \quad A$
8. $1-\frac{r_{3}}{2} \quad B$
9. $n=12 \quad D$
10. $2 x-3 y-19=0 \quad B$.

SECTION II
QuESTIOR 11 . (14 MARKS)
(a) $2 \sqrt{25} \sqrt{3}-3 \sqrt{16} \sqrt{3}$

$$
\begin{aligned}
& =10 \sqrt{3}-12 \sqrt{3} \\
& =-2 \sqrt{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x^{2}-5 x=0 \\
& x(x-5)=0 \\
& \therefore \quad x=0 \text { or } x=5 \quad 1 \\
& -2786.056774 \ldots \\
& =-2790
\end{aligned}
$$

(c)
(d)

$$
\begin{array}{ccc}
2 x+1 \geqslant 5 & \text { or } & -(2 x+1) \geqslant 5 \\
2 x \geqslant 4 & & -2 x-1 \geqslant 5 \\
x \geqslant 2 & & -2 x \geqslant 6 \\
& & x
\end{array}
$$

(e)

$$
\begin{align*}
& \frac{2}{(m+2)(m-2)}-\frac{3(m-2)}{(m+2)(m-2)} \tag{1}\\
& =\frac{2-3 m+6}{(m+2)(m-2)} \\
& =\frac{8-3 m}{(m+2)(m-2)}
\end{align*}
$$

(f)

$$
\begin{array}{r}
t=5 p+28 \\
16 p-5 t=-14 \tag{2}
\end{array}
$$

Sub (1) into (2)

$$
\begin{gathered}
16 p-5(5 p+28)=-14 \\
16 p-25 p-140=-14 \\
-9 p=126 \\
p=-14
\end{gathered}
$$

QUESTION 12 (is MARKS)
(a)
(i)

(ii)

(iii)

(iv)

(b)

(c)

$$
\begin{align*}
& x^{2}-2 x+y^{2}+10 y=-22 \\
& x^{2}-2 x+1+y^{2}+10 y+25=-22+1+25 \\
& (x-1)^{2}+(y+5)^{2}=4 \tag{1}
\end{align*}
$$

Centre $(1,-5)$ Rodin $=2$

QUESTION 13 (13 MARKS)
(i)

$$
\begin{aligned}
d_{O A} & =\sqrt{1^{2}+1^{2}} \\
& =\sqrt{2} \\
& =1.41 \quad\left(2 d_{p}\right)
\end{aligned}
$$

(ii) $\quad n=-1$
(iii) $\tan \theta=-1$

$$
\begin{gathered}
\theta=135^{\circ} \\
\therefore \quad \angle A O C=135^{\circ}
\end{gathered}
$$

(iv)

$$
\begin{gathered}
m=-1 \quad(4,6) \\
y-6=-1(x-4) \\
y-6=-x+4 \\
7=-x+10
\end{gathered}
$$

Let $y=0 \quad x=10$

$$
\therefore \text { coons of } C \text { are }(10,0)
$$

$$
\begin{align*}
& \text { (v) } \quad x+y-10=0 \quad(0,0) \\
& d_{\perp}=\frac{|1 \times 0+1 \times 0-10|}{\sqrt{1^{2}+1^{2}}} \\
& =\frac{10}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{10 \sqrt{2}}{2}=5 \sqrt{2} \text { units } \\
& \text { (vi) } \quad A=\frac{1}{2} \times 5 \sqrt{2}(\sqrt{2}+6 \sqrt{2}) \\
& =\frac{1}{2} \times 5 \sqrt{2} \times 7 \sqrt{2} \\
& B C=\sqrt{6^{2}+6^{2}} \\
& =\frac{1}{2} \times 35 \times 2 \\
& =6 \sqrt{2} \\
& =35 \text { si. units } \tag{1}
\end{align*}
$$

(vii) grad $B C=-\frac{6}{6}=-1$
\therefore Craal of line $\perp B C$ is 1
En through (0,0) grad I

$$
\begin{aligned}
y-0 & =1(x-0) \\
y & =x
\end{aligned}
$$

QJESTION 14 (16 MARKS)
(a)

$$
\begin{gathered}
\operatorname{cosec} \theta=4 \\
\frac{1}{\sin \theta}=4 \\
\sin \theta=\frac{1}{4} \quad 1 \\
\frac{1}{4} \quad \therefore \cos \theta=-\frac{\sqrt{15}}{4} \\
\frac{1}{15} \quad(2 n d=-\infty)
\end{gathered}
$$

(b)

(c)

$$
\tan 30^{\circ}=\frac{3}{A B}
$$

$$
\begin{align*}
A B & =3 \div \tan 30^{\circ} \\
& =3 \div \frac{1}{\sqrt{3}} \\
& =3 \sqrt{3} \mathrm{~cm} \tag{1}
\end{align*}
$$

(d) (i) $\cos P=-\frac{3}{4}$

Basic angle: $\theta=4 i^{\circ} 25^{\prime}$
2nd Quad: $138^{\circ} 35^{\prime} \quad 1$
3rd Quad: $\quad 221^{\circ} 25^{\prime} \quad 1$
(ii)

$$
\begin{aligned}
& \frac{1}{\tan \theta}=4 \\
& \tan \theta=\frac{1}{4}
\end{aligned}
$$

IST QUAD: $\theta=14^{\circ} 2^{\prime}, \quad 1$
3RD $\because A D: \quad \Theta=194^{\circ} 2^{\prime} \quad 1$
(e)

$$
\begin{aligned}
\sin 225^{\circ} & =\sin \left(180+45^{\circ}\right) \\
& =-\sin 45^{\circ} \\
& =-\frac{1}{\sqrt{2}} \\
& =-\frac{\sqrt{2}}{2} 1
\end{aligned}
$$

$$
\begin{aligned}
\left(f x^{\prime}\right) R Q^{2} & =12^{2}+30^{2}-2.12 \cdot 30 \cdot \cos 20^{\circ} \\
R Q & =\sqrt{12^{2}+30^{2}-2.12 \cdot 30 \cdot \cos 20^{\circ}} \\
& =19.168 \\
& =19 \cdot 2 \mathrm{~cm} \quad 1
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \frac{\sin \theta}{12}=\frac{\sin 20^{\circ}}{19 \cdot 2} \\
& \begin{aligned}
\sin \theta & =\frac{12 \sin 20^{\circ}}{19.2} \\
& =0.213 \\
\theta & =12^{\circ} 21^{\prime}
\end{aligned}
\end{aligned}
$$

Beowing is $270^{\circ}+12^{\circ} 21^{\prime}$

$$
=282^{\circ} 21^{\circ}
$$

$\left(\begin{array}{rl}\theta R \quad \frac{\sin \theta}{12} & =\frac{\sin 20}{R Q} \\ \sin \theta & =0.21\end{array}\right.$ $0=12^{\circ} 22^{\prime} \quad \therefore$ Bearing
$282^{\circ} 22^{\prime}$
(9)

$$
\begin{aligned}
\text { LHS } & =\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \quad 1 \\
& =\frac{1+\sin \theta}{\cos \theta} \\
& =\text { RHS }
\end{aligned}
$$

QUESTION 15 (13 MARKS)
(a)

$$
\begin{aligned}
& \angle A D E=48^{\circ} \text { (base } \angle \text { 's isos } \triangle=\text {) } \\
& \therefore \quad x=132^{\circ}(\text { suppi. } \angle E D C) \quad \prime
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{y_{w}}{5} & =\frac{6.3}{4.1} \\
y_{w} & =\frac{5 \times 6.3}{4.1} \\
& =7.6829 \ldots \\
& \doteqdot 7.7 \mathrm{~cm}
\end{aligned}
$$

(c) (i)

$$
\begin{aligned}
\text { (i) } \quad \angle P B Q=\angle R C Q(\text { right } 4 \text { in } \\
\text { sq-ase })
\end{aligned} \quad 1
$$

(ii)

$$
\begin{gathered}
\angle B P Q+\angle B Q P=90^{\circ}\left(\angle \sin \triangle=180^{\circ}\right) \\
\angle R Q C+\angle C Q R=90^{\circ}\left(\angle \sin \triangle=180^{\circ}\right) \\
\angle B Q P+\angle C Q R+\angle P Q R=180^{\circ} \\
90^{\circ}+\angle P Q R=180^{\circ} \\
\therefore \angle P Q R=90^{\circ} \quad 1
\end{gathered}
$$

(d)

$$
\begin{aligned}
& \text { (1) } \angle Y \times Z=\angle \omega v z \text { (ait } \angle ; \text {; } x y \| w v \text {) } \\
& \left.\angle Z \omega_{v}=\angle x y z \text { (alt } \angle s ; x y \| w\right){ }^{\prime} \\
& \angle \times 2 y=\angle \cup 2 w(v e r t \text {.opp L's) ! } \\
& \therefore \Delta x y z \| \Delta \forall \sim z \text { (equianguior) }
\end{aligned}
$$

(")

$$
\begin{aligned}
\frac{21}{36} & =\frac{20}{45} \\
21 & =\frac{20}{45} \times 36 \\
& =16 \mathrm{~cm}
\end{aligned}
$$

QUESTION 16 (21 MARKS)
(a)
(i) $y^{\prime}=-4 x-28 x^{3}$
(ii)

$$
\begin{aligned}
y & =5 x^{\frac{1}{2}}-\frac{x^{2}}{2} \\
y^{\prime} & =\frac{5}{2} x^{-\frac{1}{2}}-x \\
& =\frac{5}{2 \sqrt{x}}-x
\end{aligned}
$$

(iii)

$$
\begin{align*}
y^{\prime} & =(1-2 x) \cdot 3+(1+3 x) \cdot 2 \\
& =3-6 x-2-6 x \tag{1}\\
& =1-12 x
\end{align*}
$$

(iv)

$$
\begin{aligned}
y^{\prime} & =\frac{(1-x) \cdot 4-(4 x-1) \cdot \cdot 1}{(1-x)^{2}} \\
& =\frac{4-4 x+4 x-1}{(1-x)^{2}} \\
& =\frac{3}{(1-x)^{2}}
\end{aligned}
$$

$$
\begin{align*}
(v) 1^{\prime} & =3\left(8 x^{2}+4 x\right)^{2}(16 x+4) \\
& =3(16 x+4)\left(8 x^{2}+4 x\right)^{2} \tag{2}
\end{align*}
$$

(vi) $y=2 x(x-5)^{\frac{1}{3}}$

$$
\begin{aligned}
y^{\prime} & =2 x\left[\frac{1}{3}(x-5)^{-\frac{2}{3}} \cdot 1\right]+(x-5)^{\frac{1}{3}} \cdot 2 \\
& =\frac{2 x}{3}(x-5)^{-\frac{2}{3}}+2(x-5)^{\frac{1}{3}} \\
& =2(x-5)^{\frac{1}{3}}\left(\frac{x(x-5)^{-1}}{3}+1\right) \\
& =2 \sqrt[3]{x-5}\left(\frac{x}{3(x-5)}+1\right) \frac{1}{1}
\end{aligned}
$$

$$
\left(\text { accept } y^{\prime}=\frac{2 x}{3 \sqrt[3]{(x-5)^{2}}}+2 \sqrt[3]{x-5}\right)
$$

(vii)

$$
\begin{aligned}
y^{\prime} & =(3 x-1)\left[4(2-3 x)^{3}-3\right]+(2-3 x)^{4} \cdot 3 \\
& =-12(3 x-1)(2-3 x)^{3}+3(2-3 x)^{4} 1 \\
& =-3(2-3 x)^{3}(4(3 x-1)+2-3 x) \\
& =-3(2-3 x)^{3}(12 x-4+2-3 x) \\
& =-3(2-3 x)^{3}(9 x-2) \quad
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(x) & =x^{2}-2 x \\
f(x+h) & =(x+h)^{2}-2(x+h) \\
& =x^{2}+2 x h+h^{2}-2 x-2 h
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-2 x-2 h-\left(x^{2}-2 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-2 h}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h-2 \\
& =2 x-2 \quad 2
\end{aligned}
$$

Gradient at $x=1$ is $y^{\prime}=2 \times 1-2$

$$
=0 .
$$

(c)

$$
\begin{aligned}
& y=x^{2}+b x+c \\
& \frac{d y}{d x}=2 x+b
\end{aligned}
$$

Line $y=-3 x+5$ has grad -3
\therefore Cared of normal is $\frac{1}{3}$
use $(3,-1)$ and $\frac{d y}{d x}=\frac{1}{3}$

$$
\begin{align*}
\left(\operatorname{lin}_{t^{\prime}=2 x+b}\right) \frac{1}{3} & =2 \times 3+b \\
b & =-5 \frac{2}{3} \tag{1}
\end{align*}
$$

subinto original $-1=3^{2}-5 \frac{2}{3} \times 3+c$

$$
\therefore \leq=7 \quad 1
$$

