Question 1 (12 marks)

a) Solve:
$$2\sin x = \sqrt{3}$$
 $0^{\circ} \le x \le 360^{\circ}$ 2

b) Express 0.424242... as a fraction (showing working) in the form
$$\frac{p}{q}$$
, where p and q are integers.

c) Solve for x: i)
$$|x + 7| = 3x - 2$$
 3

ii)
$$2^{5x-2} = 32$$
 2

d) If
$$(5-3\sqrt{2})(4+\sqrt{2}) = a+b\sqrt{c}$$
, find the values of a, b and c. 3

Question 2 (12 marks)

a) Evaluate i)
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4}$$
 1

ii)
$$\lim_{x \to \infty} \frac{3x^2 - 2x + 1}{5 - 4x - 2x^2}$$
 1

b) Find
$$\frac{dy}{dx}$$
, given that 7

i)
$$y = \sqrt{x^3}$$

ii)
$$y = 3x^3 - 7x + 6$$

iii)
$$y = 7x(4x+8)^6$$

 $x - x^2$

iv)
$$y = \frac{x - x}{5x + 1}$$

c) Differentiate from First Principles $y = x^2 - 3x$ 3

Marks

Question 3 (12 marks)

- a) Sketch the following functions on separate number planes. Identify any intercepts and asymptotes where appropriate.
 - i) $y = \frac{-1}{x+3}$

ii)
$$y = \sqrt{5 - x}$$

b) Solve:
$$2\log_a(x-4) - \log_a(x-5) = \log_a(x-2)$$

c) Solve:
$$\frac{5x}{2x-1} \ge 3$$
 3

Question 4 (12 marks)

a)

b)

The diagram shows the points A(-2, 5), B(4, 3) and O(0, 0). The point C is the fourth vertex of the parallelogram OABC.

i)	Show by derivation that the equation of AB is $x + 3y - 13 = 0$	1
ii)	Find in exact form the length of AB.	1
iii)	Calculate the perpendicular distance from O to AB.	2
iv)	Calculate the area of parallelogram OABC.	1
v)	Find the coordinates of C.	2
Sketch	the region represented by $x^2 + (y-1)^2 \le 9$	2

c) Find the equation of the line through the point of intersection of the lines 2x - 3y + 6 = 0 and 5x + y - 4 = 0 and the point (1, 4).

6

Question 5 (12 marks)

a) Sketch the curve
$$y = 3\cos 2x$$
 $0^\circ \le x \le 360^\circ$ 3

3

A, B and C are three towns. B is 20km from A in the direction 330°T.
 C is 30km from A in the direction 205°T. Find the distance from B to C.
 (Hint: draw a diagram)

c) Prove the identity:
$$\frac{1}{\sec\theta - \tan\theta} - \frac{1}{\sec\theta + \tan\theta} = 2\tan\theta$$
 3

Show that
$$a = \frac{b \cos \alpha \sin \beta}{\sin(\alpha - \beta)}$$
 3

Question 6 (12 marks)

a)	Find the sum of the first 20 multiples of 7. i.e. $7 + 14 + 21 + \dots$	2
----	---	---

b) A gardener weeded his lawn over summer. The first year he dug out 2 wheelbarrows full. Each successive year he dug out $\frac{3}{4}$ of the previous years total.

	i)	How many barrows full will he have dug out in the first 10 years?	2
	ii)	Over his lifetime, what is the limiting number of barrow loads he will end up removing?	2
c)	If 2µ find	p + 1, 5p, 12p – 4 are the first 3 terms of a geometric sequence, the value of p and hence find T _n .	3
d)	Cons i)	sider the series $\log_a 36 + \log_a 18 + \log_a 9 + \dots + \log_a \frac{9}{8}$ Show that it is an arithmetic series.	3

ii) Find the sum of the series.

Question 7 (12 marks)

a) Sketch the derivative of the curve below and clearly label it

b Find the equation of the normal to $y = 9 - x^2$ at P(1, 8). 3

c) Given the curve
$$y = x^4 - 16x^3 + 72x^2 + 10$$
, find 7

- i) All stationary points and determine their nature
- ii) Any points of inflexion, justifying your answers
- iii) Sketch the curve showing this information.

Question 8 (12 marks)

AB is a diameter and $CD \perp AB$.

Prove that E, G, F and B are concyclic

b)

ABCD is a rectangle. AB = 2AD. M is the midpoint of AD. The line BM meets AC at X.

- i) Show that $\triangle AXM$ and $\triangle BXC$ are similar. 3
- ii) Show that 3CX = 2AC 2
- c) Two circles meet each other at A and B. AC and DB are tangents. Prove that AD || BC

Question 9 (12 marks)

b)

a)

The diagram shows a tower TF of height *h* metres standing due north of A on level ground. The angles of elevation of the top T of the tower from two points A and B (due east of A), on the ground nearby are 55° and 40° respectively. The distance AB is 50m.

i)	What is the measure of $\angle FAB$?	1
ii)	Find AF and BF in terms of <i>h</i> .	2
iii)	Hence find the height of the tower to the nearest metre.	3
A cylinder, open at one end has a volume of 1000cm ³ .		

i)	Show that the surface area <i>S</i> is given by	$S = \pi r^2 + \frac{2000}{\pi}$	2
		r	

ii) Find the value of *r*, to 4 significant figures that minimises the surface area.

...../page 7

Question 10 (12 marks)

a) A ball is thrown vertically up in the air with its height x metres above the ground at any time t seconds given by x = 4t(5 - t).

i)	When does it reach maximum height?		2
ii)	What is the maximum height reached?		1
iii)	What is its acceleration then?		1
iv)	What is the speed of the ball when it returns to the ground?	2	
v)	Find the distance travelled during the 3 rd second.		2

b) Sketch a continuous curve y = f(x) having the following properties.

f(-3) = 12, f(0) = 6, f(3) = f'(3) = f'(-3) = 0f'(x) < 0 for -3 < x < 3 and f'(x) > 0 for x < -3 or x > 3

c) Give an example by sketching, of a function which has a minimum at x = 0, but which is not differentiable at x = 0.

END OF EXAMINATION

3 $(\bigcirc$ Q4 $M_{AB} = \frac{5-3}{-2-4} = -\frac{1}{3}.$ a) Ч a)1) 4-5=-1 (24+2) 1/3 39-15=-2-2 x+3y-13=0 SHAPE, ASHAPTOTE NTERCEF (i) $AB = \sqrt{(-2-4)^2 + (5-3)^4}$ ii) matif 155 = 540 15 3 = 2510 5 `n`) 0+3×0-13 d = $y = \sqrt{2-5} - 215 = 2^{\circ}$ b) 210g(x-q)-10g(x-1) = 10g(x) 13:0 = 13:0 = $\frac{(n-4)^2}{2k-1} = 2k+2$ iv) $A = bh = 2\sqrt{10} \times \frac{13}{\sqrt{10}} = 26u^2$ (-2,5) $(n-4)^2 = (n-1)(n-5)$ v) 22-72+10 B(4,3) 2 _ 8x +16 = 6,05 x=6 Nebe C(6-2)·=(6,-2) Ignoring denominator = 0 take mark 66 -> 3. (2x-1)(-x+3) 7.0. 5 % 6) 1 circle $\frac{1}{2} < x \leq 3$. 22-1 20. case2 The stand 18 region -18 22-120 Note centre x < 4* フリン necessory 4012 maybe n > 6x - 3 VE Not necese 5x < 6x-3. C) (227-3y+6)# K (52+y-4)=0 -×<-3 Subst(2-12+6) + K(5+4-4) = 0No solu ×≥۱ 16 53 5K=4 only soly =) 5(2x-3y+6)+4(5x+y-4)=0 1 (1 x 3 1/2 x x 3 1

.

$$\begin{aligned} & 2\left(\frac{4}{17}\right)^{-3} \frac{1}{3} + 6 = 0 \\ & 12 - 5 \frac{1}{3} \frac{1}{3} + \frac{102}{51} = 2 \\ & y = \frac{114}{51} = 2 \frac{4}{17} \\ & (1, 4) \end{aligned}$$

$$m = \frac{4 - 2^{4}/\pi}{1 - 6/17} = 2\frac{8}{11} = \frac{30}{11} / \sqrt{1 - 6/17}$$

$$\frac{4}{1 - 6/17} = \frac{30}{11} (\pi - 1)$$

$$\frac{1}{11} - \frac{4}{11} = \frac{30\pi}{11} (\pi - 1)$$

$$\frac{1}{11} - \frac{4}{11} = \frac{30\pi}{11} - \frac$$

$$\rightarrow y = \frac{30^{2}}{11} + \frac{14}{11} \sqrt{\frac{1}{11}}$$

Section 20

petitize 1

Second Provide

State Black

ľ

4) 3 360 2 0 $\dot{q_O}$ 180 270 3 З ß (amp, peniod Ь) shape) 1+50 225 n 250 (not asked for) С $BC^{2} = 20^{2} + 30^{2} - 2x 20x30x \cos 10^{12}$ = 1867.142 Be= 42.5Km 44.6/ hm. (Note: If no diagram 2 marks at point 2) e) LHS =] Seco Hand Seco-tamo = Secottowe _ Sucottome Sect-+an20 2tomo \geq ١ = RHS.

d) E æ $\cos \alpha = \frac{\alpha}{d}$ $d = \frac{a}{\cos a}$ b Sm(x-B) = d Sin/B $\frac{b}{\mathrm{Sm}(\alpha-\beta)} = \frac{\alpha}{(\mathrm{OSX}\,\mathrm{Sin}\beta)}$ a= bcosasins Sm(x-B) Sina cosp - cosa. sinp.

Q6 a) a=7 1=140 n = 20 $S = \frac{20}{2} (7 + 140)$ = 1470 b) $r = \frac{3}{4} q = 2 n = 10$ i) $\frac{4}{4}$ $S_{10} = 2\left(1 - \left(\frac{3}{4}\right)^{10}\right)$ 1-3/4 = 7.5 loads 7 loado (2) E) $S = \frac{Q}{1-r} = \frac{2}{1-3} = 8 \ loads$ 1 5p = 1ap-42pt1 5p. $5p^2 = 24p^2 + 4p - 4$ 1 $\left(P^{-2}\right)^{L} = O$ = 2 T2 = 10 T3 = 20) 5x2n-1

 \mathcal{A} i) $T_3 - T_2 = \log q - \log l$ $= \log \frac{1}{2} = -\log 2$ $T_2 - T_1 = 10918 - 10936$ = 109 1/2 = = - 0,301 arithmetic. + log 2 no marks ĨN) n=6 a = 10936l= 109 9 $S = \frac{6}{2} \left[\log 36 + \log \frac{9}{8} \right]$ $= 3 \log \left(\frac{81}{2}\right)$ 36×9 8

(3)
(AFB = 30° (drameter/erre Thm)

$$\angle CEB = 30° (given)$$

 $\therefore EGFB is a cyclic Quad. (Opp 25 ± to 180°)
(DAX = ∠ACB (Vert opp)
 $\angle DAX = ∠ACB (alts = , Dell AB)$
 $\therefore AMXAIII DEXB (AA)$
(i)
 $2MXA = CB (Give)
 $2AY = XC (Corrs sides SIM AS)$
 $AX = AC$
 $AX = 2$
 $AX = AC$
 $CX = 2$
 $AX = AC$
 $CX = 2$
 $AX = AC$
 $CX = 2AC$
 $CX = 2AC$$$

Qq
a) i)
$$\angle FAB = 30^{\circ}$$

ii) $AF = cotss' \qquad BF = hcot40^{\circ}$
 $AF = hcotss_{2} + AB^{2} = BF^{2}$
iii.) $(hcotss)^{2} + ro^{2} = (hcot40)^{2}$
 $AF = hcotss_{2} + AB^{2} = BF^{2}$
iii.) $(hcotss)^{2} + ro^{2} = (hcot40)^{2}$
 $A = h^{2} cotss + 2sroo = h^{2} cot^{2}40$
 $-h^{2} = \frac{2roo}{cot4c0 \cdot cot^{2}rs} = \frac{2(50)}{+au^{2}t0 - tau^{2}sr}$
 $= 2(58 \cdot L)$
 $h = 671 \cdot 6 m = 52m$
b) i) $V = Tr^{2}h \Rightarrow 1000 = Tr^{2}h$
 $h = 1000$
 Tr^{2}
 $BA = Tr^{2} + 2Trh$
 $= Tr^{2} + 20rh$
 $= Tr^{2} + 20rh$
 r^{2}
 $\frac{dSA}{dV} = 2Tr - 2000$
 $r = \frac{10}{r^{2}}$
 $\frac{dSA}{dV} = 0 \Rightarrow 2Tr - 2000$
 $r = \frac{10}{r^{2}}$
 $Test = \frac{r}{10} + \frac{10}{r^{2}} + \frac{10}{r^{2}} + \frac{1}{r^{2}}$
 $Asia Fas G - 828 = 1$

(3) 10
(4) 1)
$$x = 20t - 4t^{2}$$

 $\dot{x} = 20 - 8t$ (1) or $t = -\frac{b}{2a} = -\frac{20}{-8} - 2V_{2}$
 $\dot{x} = 0 \Rightarrow t = 2V_{2}$ (1)
(1) $x(\partial t) = 20\pi 2b - 4x(2t)^{2} = 3934$
(1) $x = -8 m/5^{2}$
(1) $x(d) = 20 - 8x5 = -20 m/s$
 $y) x(d) = 24 x(2t) = 3344 x(3) = 24$
 $\therefore distance = 342 m$
 $3 - 4:$
(1)
(1) $x = -3$
(1) $x = -3$
(1) $x(d) = -3$
(2) $x(d) = -3$
(2) $x(d) = -3$
(3) $x(d) = -3$
(4) $x(d) = -3$
(4) $x(d) = -3$
(5) $x(d) = -3$
(6) $x(d) = -3$
(7) $x(d) = -3$
(8) $x(d) = -3$
(9) $x(d) = -3$

meets the criteria

N N 101