a) Solve: $2 \sin x=\sqrt{3} \quad 0^{\circ} \leq x \leq 360^{\circ}$
b) Express $0.424242 \ldots \ldots$ as a fraction (showing working) in the form $\frac{p}{q}$, where p and q are integers.
c) Solve for x : i) $|x+7|=3 x-2$
ii) $\quad 2^{5 x-2}=32$
d) If $\quad(5-3 \sqrt{2})(4+\sqrt{2})=a+b \sqrt{c}$, find the values of a, b and c. 3

Question 2 (12 marks)
a) Evaluate i) $\lim _{x \rightarrow 4} \frac{x^{2}-16}{x-4}$

$$
\text { ii) } \lim _{x \rightarrow \infty} \frac{3 x^{2}-2 x+1}{5-4 x-2 x^{2}}
$$

b) Find $\frac{d y}{d x}$, given that
i) $y=\sqrt{x^{3}}$
ii) $y=3 x^{3}-7 x+6$
iii) $\quad y=7 x(4 x+8)^{6}$
iv) $y=\frac{x-x^{2}}{5 x+1}$
c) Differentiate from First Principles $y=x^{2}-3 x$

Question 3 (12 marks)
a) Sketch the following functions on separate number planes.

Identify any intercepts and asymptotes where appropriate.
i) $y=\frac{-1}{x+3}$
ii) $y=\sqrt{5-x}$
b) Solve: $2 \log _{a}(x-4)-\log _{a}(x-5)=\log _{a}(x-2)$
c) Solve: $\frac{5 x}{2 x-1} \geq 3$

Question 4 (12 marks)
a)

The diagram shows the points $\mathrm{A}(-2,5), \mathrm{B}(4,3)$ and $\mathrm{O}(0,0)$. The point C is the fourth vertex of the parallelogram OABC.
i) Show by derivation that the equation of AB is $x+3 y-13=0$
ii) Find in exact form the length of AB .
iii) Calculate the perpendicular distance from O to AB .
iv) Calculate the area of parallelogram OABC.
v) Find the coordinates of C.
b) Sketch the region represented by $x^{2}+(y-1)^{2} \leq 9$
c) Find the equation of the line through the point of intersection of the lines $2 x-3 y+6=0$ and $5 x+y-4=0$ and the point $(1,4)$.

Question 5 (12 marks)
a) Sketch the curve $y=3 \cos 2 x \quad 0^{\circ} \leq x \leq 360^{\circ}$
b) $\quad \mathrm{A}, \mathrm{B}$ and C are three towns. B is 20 km from A in the direction $330^{\circ} \mathrm{T}$.

C is 30 km from A in the direction $205^{\circ} \mathrm{T}$. Find the distance from B to C .
(Hint: draw a diagram)
c) Prove the identity: $\frac{1}{\sec \theta-\tan \theta}-\frac{1}{\sec \theta+\tan \theta}=2 \tan \theta$
d)

Show that $a=\frac{b \cos \alpha \sin \beta}{\sin (\alpha-\beta)}$

Question 6 (12 marks)
a) Find the sum of the first 20 multiples of 7. i.e. $7+14+21+\ldots \ldots$
b) A gardener weeded his lawn over summer. The first year he dug out 2 wheelbarrows full. Each successive year he dug out $\frac{3}{4}$ of the previous years total.
i) How many barrows full will he have dug out in the first 10 years?
ii) Over his lifetime, what is the limiting number of barrow loads he will end up removing?
c) If $2 p+1,5 p, 12 p-4$ are the first 3 terms of a geometric sequence, find the value of p and hence find T_{n}.
d) Consider the series $\log _{a} 36+\log _{a} 18+\log _{a} 9+\ldots \ldots \ldots+\log _{a} \frac{9}{8}$
i) Show that it is an arithmetic series.
ii) Find the sum of the series.

Question 7 (12 marks)
a) Sketch the derivative of the curve below and clearly label it

A
b Find the equation of the normal to $y=9-x^{2}$ at $\mathrm{P}(1,8)$.
c) Given the curve $y=x^{4}-16 x^{3}+72 x^{2}+10$, find
i) All stationary points and determine their nature
ii) Any points of inflexion, justifying your answers
iii) Sketch the curve showing this information.

Question 8 (12 marks)
a)

$A B$ is a diameter and $C D \perp A B$.
Prove that E, G, F and B are concyclic
b)

$A B C D$ is a rectangle. $A B=2 A D . M$ is the midpoint of $A D$. The line $B M$ meets $A C$ at X .
i) Show that $\triangle \mathrm{AXM}$ and $\triangle \mathrm{BXC}$ are similar. 3
ii) Show that $3 \mathrm{CX}=2 \mathrm{AC}$
c) Two circles meet each other at A and B. AC and DB are tangents.

Prove that AD || BC

Question 9 (12 marks)
a)

The diagram shows a tower TF of height h metres standing due north of A on level ground. The angles of elevation of the top T of the tower from two points A and B (due east of A), on the ground nearby are 55° and 40° respectively. The distance $A B$ is 50 m .

i) What is the measure of $\angle \mathrm{FAB}$?
ii) Find AF and BF in terms of h. 2
iii) Hence find the height of the tower to the nearest metre.
b) A cylinder, open at one end has a volume of $1000 \mathrm{~cm}^{3}$.
i) Show that the surface area S is given by $S=\pi r^{2}+\frac{2000}{r}$
ii) Find the value of r, to 4 significant figures that minimises the surface area.

Question 10 (12 marks)
a) A ball is thrown vertically up in the air with its height x metres above the ground at any time t seconds given by $x=4 t(5-t)$.
i) When does it reach maximum height? 2
ii) What is the maximum height reached? $\mathbf{1}$
iii) What is its acceleration then? 1
iv) What is the speed of the ball when it returns to the ground? 2
v) Find the distance travelled during the $3^{\text {rd }}$ second. 2
b) Sketch a continuous curve $y=f(x)$ having the following properties.

$$
\begin{aligned}
& f(-3)=12, \\
& f(0)=6, \\
& f(3)=f^{\prime}(3)=f^{\prime}(-3)=0 \\
& f^{\prime}(x)<0 \text { for }-3<x<3 \text { and } f^{\prime}(x)>0 \text { for } x<-3 \text { or } x>3
\end{aligned}
$$

c) Give an example by sketching, of a function which has a minimum at $x=0$, but which is not differentiable at $x=0$.
m2cor YR I 怍YSUaGESTED SOUTIONS

$$
\begin{align*}
& 2 \sin x=\sqrt{3} \\
& \sin x=\frac{\sqrt{3}}{2} \\
& x=60^{\circ} \text { or } 120^{\circ} \tag{リリリ}
\end{align*}
$$

p）

$$
\begin{aligned}
x & =0.4242 \ldots \\
100 x & =42.42 \ldots \\
99 x & =42 \\
x & =\frac{42}{99} \\
& =\frac{14}{33}
\end{aligned}
$$

$$
100 x=42 \cdot 42 \ldots 1
$$

c）i）$|x+7|=3 x-2$
（1）

$$
\begin{aligned}
& x+7=3 x-2 \\
& 9=2 x \\
& x=41 / 2 \\
& 2^{5 x-2}=32 \Rightarrow 5 x-2=52 . \\
& -x-7=3 x-2=\frac{7}{5} \\
& 4 x=-5 \\
& x=\frac{-5}{4}
\end{aligned}
$$

Solus
$41 / 2 V-\frac{5}{4} X$
only ane

$$
\begin{aligned}
& x=41 / 2 \\
& (1+\sqrt{2})=20+5 \sqrt{2}-12 \sqrt{2}-6 \\
& 1=14-7 \sqrt{2} \\
& 1 a=14 \\
& 1 \quad b=-7
\end{aligned}
$$

e）
a） $\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{(x-4)}=8$
ii）$\frac{3}{-2}$
b）i）$y=x^{3 / 2} \quad$ Accent $\frac{3 x^{2}}{2 \sqrt{x^{3}}}$ ．

$$
y^{\prime}=\frac{3}{2} x^{1 / 2}
$$

ii）$y^{\prime}=9 x^{2}-7$
tromsuript error $6 x_{-1} 7(A-\operatorname{arad} 2)$

$$
\begin{aligned}
& \text { iii) } y=7 x(4 x+8)^{6} \quad \text { product orle ormise } 0 \text {. } \\
& y^{\prime}=7 x \times 6 \times 4(4 x+8)^{5}+(4 x+8)^{6} \times 7 \quad 1 \\
& =168^{4}(4 x+8)^{5}+7(4 x+18)^{6} \\
& =7(4 x+8)^{5}[8 x+4 x](282 c+8 \text { mist of tory }
\end{aligned}
$$

iv）$y=\frac{x-x^{2}}{5 x+1} \quad$ wrong rule $=0 .!$ ！

$$
\begin{aligned}
y^{\prime} & =\frac{(5 x+1) \times(1-2 x)-\left(x-x^{2}\right)}{5 x+1} \times 1,1 \\
& =\frac{-5 x^{2}-2 x+1}{(5 x+1)^{2}} \sqrt{ }+w_{20}^{\infty} w^{2} \times 4
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)-\left(x^{2}-3 x\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h-3 h}{h}+h^{2} \\
& =2 x-3
\end{aligned}
$$

lose a mark for no $\lim _{h \rightarrow 0}$

Q 3
a)

b) $2 \log (x-4)-\log (x-1)=\log (x)$

$$
\begin{aligned}
& \frac{(x-4)^{2}}{x-1}=x+2 \\
& (x-4)^{2}=(x-1)(x-5) \\
& x^{2}-8 x+16=x^{2}-7 x+10
\end{aligned}
$$

a)
iii)
iv)
v)

$$
\begin{aligned}
& \text { i) } M_{A B}=\frac{5-3}{-2-4}=-\frac{1}{3} . \\
& 4-5=-\frac{1}{3}(x+2)
\end{aligned}
$$

$$
3 y-15=-x-2
$$

$$
x+3 y-13=0
$$

ii) $A B=\sqrt{(-2-4)^{2}+(5-3)^{2}}$

$$
\begin{aligned}
& =\sqrt{40} \\
& =2 \sqrt{10}
\end{aligned}
$$

$$
d=\left|\frac{0+3 \times 0-13}{\sqrt{1+9}}\right|
$$

$$
=\left|-\frac{13}{\sqrt{10}}\right|=\frac{13}{\sqrt{10}}
$$

$$
\begin{aligned}
& A=b h=2 \sqrt{10} \times \frac{13}{\sqrt{10}}=26 u^{2} \\
& (-2,5)
\end{aligned}
$$

)

c) $\quad(2 x-3 y+6)+k(5 x+y-4)=0 \quad 1$

Subs $(2-12+6)+k(5+4-4)=0$

$$
5 k=4
$$

$$
k=4 / 5
$$

$\begin{aligned} k & =4 / 5 \\ 1 \Rightarrow 5(2 x-3 y+6)+4(5 x+y-4) & =0,\end{aligned}$

Q4
c)

$$
\begin{array}{lc}
1= & 2 x-3 y=-6 \\
2 x-3 y+6=0 & 15 x+3 y=12 \\
5 x+y-4=0 . & \times 3
\end{array}
$$

$$
\begin{gathered}
2\left(\frac{6}{17}\right)-3 y+6=0 \\
12-51 y+102=0 \\
y=\frac{114}{51}=2 \frac{4}{17}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{6}{17}, 2 \frac{4}{17}\right) \\
& (1,4)
\end{aligned}
$$

$$
m=\frac{4-24 / 7}{1-6 / 17}=2 \frac{8}{11}=\frac{30}{11}
$$

$$
y-4=\frac{30}{11}(x-1)
$$

$$
\begin{aligned}
& 4=30 x-30 . \\
& 0=30 x-11 y+14
\end{aligned} \rightarrow y=\frac{30 x}{11}+\frac{14}{11}
$$

$$
11 y-44=30 x-30
$$

a)

b)

$$
=1867.142
$$

$$
\mathrm{Be} \div 4.2 .5 \mathrm{~km} 44.61 \mathrm{~km} .
$$

(Note: If no diagram marks at point 2)
c)

$$
\begin{aligned}
L H S & =\frac{1}{\sec \theta \tan \theta}-\frac{1}{\sec \theta+\tan \theta} \\
& =\frac{\sec \theta+\tan \theta-\sec \theta+\tan \theta 1}{\sec ^{2} \theta-\tan ^{2} \theta} 1 \\
& =\frac{2 \tan \theta}{1} 1 \\
& =\text { RUS. }
\end{aligned}
$$

d)

$$
\begin{aligned}
& \cos \alpha=\frac{a}{d} \\
& d=\frac{a}{\cos \alpha} \\
& \frac{b}{\sin (\alpha-\beta)}=\frac{\alpha}{\sin \beta} \\
& \frac{b}{\sin (\alpha-\beta)}=\frac{a}{\cos \alpha \sin \beta} \\
& a=\frac{b \cos \alpha \sin \beta}{\sin (\alpha-\beta)} \\
& \sin \alpha \cos \beta-\cos \alpha \cdot \sin \beta
\end{aligned}
$$

Qb
a)

$$
\text { a) } \begin{aligned}
a & =7 \\
l & =140 \\
n & =20 \\
S= & \frac{20}{2}(7+140) \\
= & 1470
\end{aligned}
$$

b)

$$
\begin{aligned}
\text { i) } & =\frac{3}{4} \quad a=2 \quad n=10 \\
s_{10} & =2\left(1-\left(\frac{3}{4}\right)^{10}\right) \\
& =7-510 \mathrm{4} \\
& =7
\end{aligned}
$$

a.)

$$
\begin{align*}
& S=\frac{a}{1-r}=\frac{2}{1-3 / 4} \tag{2}\\
& \frac{5 p}{2 p+1}=\frac{12 p-4}{5 p} \\
& 25 p^{2}=24 p^{2}+4 p-4 \\
&(p-2)^{2}=0 \\
& p=2
\end{align*}
$$

$$
\begin{aligned}
& \text { 2) } \frac{5 p}{2 p+1}=\frac{12 p-4}{5 p} \\
& 25 p^{2}=24 p^{2}+4 p-4 \\
& (p-2)^{2}=0 \\
& p=2 \\
& \left.T_{2}=10 \quad T_{3}=20\right) \\
& \text { asked for } \\
& =5 \times 2^{n-1}
\end{aligned}
$$

d)

$$
\text { i) } \begin{aligned}
& T_{3}-T_{2}=\log 9-\log \theta \\
&=\log \frac{1}{2}=-\log 2 \\
& T_{2}-T_{1}=\log 18 \cdot \log 36 \\
&=\log \frac{1}{2}=\Theta^{\log 2} \\
&=-2301 .
\end{aligned}
$$

\therefore arithmetic.
$+\log ^{2} n \mathrm{mam}$.

$$
\text { ii) } \begin{aligned}
n & =6 \\
a & =\log 36 \\
l & =\log \frac{9}{8} \\
S= & \frac{6}{2}\left[\log 36+\log \frac{9}{8}\right] \\
= & 3 \log \left(\frac{81}{2}\right)
\end{aligned}
$$

$$
\frac{9}{36 \times \frac{9}{8}}
$$

$\$ 7$
a)

b)

$$
\begin{aligned}
& y=9-x^{2} \\
& y^{\prime}=-2 x .
\end{aligned}
$$

at $x=1, \quad m=-2 \therefore \perp m=\frac{1}{2}$

$$
\begin{aligned}
& 9-8=\frac{1}{2}(x-1) \\
& 2 y-16=x-1 \\
& x-2 y+15=0
\end{aligned}
$$

for tangent: (2) marks
c)

$$
\begin{aligned}
& y^{4}-16 x^{3}+72 x^{2}+10 \\
& y^{\prime}=4 x^{3}-48 x^{2}+144 x \text {. } \\
& =4 x\left(x^{2}-12 x+36\right) \quad \mid \\
& =4 x(x-6)^{2} \\
& y^{\prime \prime}=12 x^{2}-96 x+144 . \\
& =12(x-2)(x-6) \\
& \begin{array}{ccc}
y^{\prime}=0 \Rightarrow & x=6 & \text { or } \\
0 & \\
y=432 & 10 & 1 \\
(6,432) & (0,16)
\end{array} \\
& y^{\prime \prime} \Rightarrow 0 \Rightarrow x=2006 \\
& (2,116)\left(\begin{array}{c}
4,42 \\
(6,43) \\
7354
\end{array}\right. \\
& \text { Test }
\end{aligned}
$$

Qr
a) $\angle A F B=S 0^{\circ}$ (diametir/circ. Thu)
$\angle C E B=90^{\circ}$ (given)
$\therefore E C_{1} F B$ is a cyclic Quad. (Op p<s \sum to 180°) I
b) i)

$$
\begin{aligned}
& \angle M X A=\angle C \times B(\text { Vert opp }) \\
& \angle D A X=\angle A C B \quad(\text { alts }=, D C \| A B) \\
\therefore & \triangle M \times A \| \angle C \times B(A A)
\end{aligned}
$$

ii) $\quad 2 M A=C B$ (giver)
$2 A X=X C$ (Corrs sides $\operatorname{sim} \Delta S$)

$$
3 C x=2 A C
$$

1
c)

\qquad
const $A B$
let $\angle B C A \alpha$.
$\therefore \angle A B D=\alpha$ (farthest alt segthn)
Let $\angle B D A=\beta$

$$
\begin{aligned}
& \therefore \angle C A B=\beta(11 \quad \text { " } \because) \\
& \therefore \angle A B C=180-(\alpha+\beta) \quad(\angle \operatorname{sum} \Delta) \\
& \angle D A B=180-(\alpha+\beta) \quad(11)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
A x+C x & =A C \\
3 A x & =A C .
\end{aligned} \quad \begin{array}{l}
C X \\
A X
\end{array} \\
& C x=\frac{2}{3} A C \\
& \text { han? } \\
& \begin{array}{ll}
c x=2 A X & A C=3 A X . \\
3 C X=6 A X & 2 A C=6 A X .
\end{array}
\end{aligned}
$$

$Q 9$
a) j) $\angle F A B=90^{\circ}$
ii) $\frac{A F}{h}=\cot 55^{\circ} \quad B F=h \cot 40^{\circ}$
hin terms of in

$$
A F=n \cot 5 S^{2}+A B^{2}=
$$

iii) $\quad(h \cot 55)^{2}+\Gamma{D^{2}}^{2}=\left(h F^{B}=\left(\begin{array}{c} \\ \\ \cot 40\end{array}\right)^{2}\right.$

$$
\begin{aligned}
& h^{2} \cot ^{2} 55+2500=h^{2} \cot ^{2} 40 \\
& h^{2}=\frac{2500}{\cot ^{2} 40-\cot ^{2} 55}=\frac{250}{\tan ^{2} 50-\tan ^{2} 35} \\
& =2688.2
\end{aligned}
$$

$$
h \doteq 51.8 \mathrm{~m} \doteq 52 \mathrm{~m}
$$

b) i)

$$
\begin{aligned}
& V=\pi r^{2} h \quad \Rightarrow \quad 1000=\pi r^{2} h \\
& h=\frac{1000}{\pi r^{2}} \\
& S A=\pi r^{2}+2 \pi r h \\
&=\pi r^{2}+\frac{2000}{r}
\end{aligned}
$$

ii.)

$$
\begin{array}{r}
\frac{d(S A)}{d r}=2 \pi r-\frac{2000}{r^{2}} \\
\frac{d S A}{d r}=0 \Rightarrow 2 \pi r=\frac{2000}{r^{2}} \\
r^{3}=\frac{1000}{\pi} \\
r=\frac{10}{\sqrt[3]{\pi}}
\end{array}
$$

Test

4 siagigs $\quad 6.828$.

Q 10
a) 1)

$$
\begin{aligned}
& x=20 t-4 t^{2} \\
& \dot{x}=20-8 t \quad \text { (1) or } t=\frac{-b}{2 a}=\frac{-20}{-8}=21 / 2 \\
& \dot{x}=0 \Rightarrow t=21 / 2 \text { (1) }
\end{aligned}
$$

ii) $x(21 / 2)=\frac{4(2.5)(5-2.5)}{20 \times 21 / 2-4 \times(21 / 2)^{2}}=35 \frac{25 m}{393 / 4}$.
iii) $\ddot{x}=-8 \mathrm{~m} / \mathrm{s}^{2}$
iv) at $t=5$

$$
\begin{array}{lc}
\dot{x}(5)=20-8 \times 5= & -20 \mathrm{~m} / \mathrm{s} \\
\text { speed }=20 \mathrm{~m} / \mathrm{s} . & 25
\end{array}
$$

v)

$$
\begin{aligned}
& x(2)=24 \quad x\left(2 \frac{1}{2}\right)=3 \frac{3}{1} / 4 \quad x(3)=24 \\
& \therefore \text { distance }=3 t_{2}^{2} m .
\end{aligned}
$$

$3 \rightarrow 4$:
b)

() eg

ar anything else that meets the criteria

