

# NORTH SYDNEY BOYS HIGH SCHOOL

# 2009 Preliminary Examination

# **Mathematics**

Teacher: Mr Berry

#### Instructions

- Working time 2 hours 30 minutes
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new Question is to be started on a new page.
- Attempt all questions

# Student Name:

(To be used by the exam markers only.)

| Question<br>No | 1  | 2  | 3  | 4  | 5           | 6             | 7  | Total |
|----------------|----|----|----|----|-------------|---------------|----|-------|
| Mark           | 21 | 20 | 12 | 12 | <del></del> | <del>13</del> | 12 | 105   |

| Preliminary Course 2009 | Vacanta Farana |
|-------------------------|----------------|
| Freilminary Course 2009 | Yearly Exam    |
|                         |                |

| Prelin | ninary Course 2009 Yearly Exam Mathem                                                        | atics |
|--------|----------------------------------------------------------------------------------------------|-------|
| Ques   | Stion 1 (21 Marks) Use a Separate Sheet of paper                                             | Marks |
| a)     | Find the value of $\frac{1}{7.38} + \frac{1}{9.85}$ , correct to 3 significant figures.      | 2     |
| b)     | Express the decimal 0.48 as a fraction in simplest form.                                     | 2     |
| c)     | If $\sqrt{56} + \sqrt{14} = \sqrt{A}$ , find A.                                              | 2     |
| d)     | Express $\frac{4\sqrt{3}+3}{3\sqrt{3}-1}$ with a rational denominator. Simplify your answer. | 2     |
| e)     | Factorise the following expressions fully:                                                   |       |
|        | i) $x^2 - 5x - 14$                                                                           | 1     |
|        | ii) $ax + ba + by + xy$                                                                      |       |
|        |                                                                                              | 2     |
| f)     | Simplify: $(x-1)^2 - (x-2)^2$                                                                |       |

g) Simplify 
$$\frac{10x-15}{6} \times \frac{1}{8x-12}$$
 as a single fraction in simplest form.

i) 
$$6(y-1) = 3(y+8)$$
  
ii)  $\frac{a+2}{3} = \frac{a}{2} - 2$ 

2

i) Solve for 
$$x: |2x+2| < 8$$
.

# End of Question 1.

Question 2 (20 Marks)

Use a Separate Sheet of paper

Marks

a) If  $f(x) = 2x^2 - x$  is this an odd function, even function or neither?

1

b) A function is defined by the rule  $g(x) = \begin{cases} x+1, & \text{if } x \ge 1 \\ -1, & \text{if } -2 < x < 1 \\ 1-x, & \text{if } x \le -2 \end{cases}$ 

4

Find if they exist,

- i) g(1)
- ii) g(-1)
- iii) g(0)
- iv) g(2) + g(-2)

c) Sketch the graphs of the following, showing the x and y intercepts, stating the domain and range of each.

i)  $y = 2^x$ 

4

ii)  $x^2 + (y+3)^2 = 36$ 

4

iii) 0 = 3x - y - 5

3

d) Show the region of the number plane where the following hold simultaneously:

$$y \le x+1$$

and xy > 4

End of Question 2.

# Question 3 (12 Marks)

Use a Separate Sheet of paper

Marks

a) Find the derivative of the following: (You do not need to simplify your answers after finding the derivative.)

i) 
$$2x^7 - 3x^5 + 5x^3 - 17$$

ii) 
$$\frac{1}{\sqrt[3]{x^4}}$$

iii) 
$$(x-2)(6x+7)$$

iv) 
$$\frac{2x^2+1}{5-3x^2}$$

b) Find 
$$g'(-1)$$
 for  $g(x) = (-x^4 + 3)^5$ .

c) Given 
$$f(x) = (x+1)\sqrt{x}$$
 find  $f'(x)$ .

## End of Question 3.

| Preliminary | Course 2009                                                                                      | Yearly Exam                                                | Mathematics             |  |  |
|-------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|--|--|
| Question    | 4 (12 Marks)                                                                                     | Use a Separate Sheet of                                    | of paper Marks          |  |  |
|             | The points A(2,0), B(8,4), C(4,6) and D( $x_1$ , $y_1$ ) form the 4 vertices of a parallelogram. |                                                            |                         |  |  |
| a)          | Draw a number plane a                                                                            | and mark $A$ , $B$ & $C$ on it.                            | 1                       |  |  |
| b)          | Find the gradient of lin                                                                         | e AB                                                       | 1                       |  |  |
| c)          | Show that the equation is $2x-3y+10=0$                                                           | of the line <i>l</i> parallel to <i>Al</i>                 | B and going through $C$ |  |  |
| d)          | _                                                                                                | ne $k$ through $A$ parallel to the intersection of the lim |                         |  |  |
| e)          | Find the angle $\theta$ to the positive <i>x</i> -axis                                           | nearest degree that the lin                                | ne $AB$ makes with the  |  |  |
| f)          | Find the perpendicular                                                                           | distance between the line                                  | l and $A$ .             |  |  |
| g)          | Find the exact area of A                                                                         | ABCD                                                       | 2                       |  |  |
|             |                                                                                                  | End of Question 4.                                         |                         |  |  |

Question 5 (15 Marks)

Use a Separate Sheet of paper

Marks

3

a) In the diagram below O is the centre of the two circles. AB is the diameter of the larger circle and CD is the diameter of the smaller circle.



i) Prove that  $\triangle AOC \equiv \triangle ODB$ 

Hence, or otherwise, prove:

- ii) AC = DB
- ii) AC  $\parallel$  DB
- b) The sum of the interior angles of a regular polygon is 2700°
  - i) How many sides has the polygon?

    ii) Find the size of each interior angle to the nearest minute.
  - iii) Hence find the size of each exterior angle.

Question 5 continues on page 7

c) Prove that  $\triangle ABC$  is similar to  $\triangle DEA$ 

Marks



d) In the figure below AB = BC = DC and  $\angle BCD = 24^{\circ}$ 

4



Find the values of x and y, giving reasons for each step.

End of Question 5.

#### Preliminary Course 2009 Yearly Exam Mathematics Marks Question 6 (13 Marks) Use a Separate Sheet of paper From a point 5m above the ground, the angle of depression of the bottom a) of a wall is 21° and the angle of elevation of the top of the wall is 32°. 1 Draw a diagram to represent this information. 2 ii) Find the distance from the point of observation to the bottom of the wall. (correct to 2 decimal places) 2 iii) Using your answer from part (i) and the Sine Rule. Find the height of the wall. (correct to 2 decimal places) **b**) Zoe and Kobi set out on a bike ride from point P at the same time. One travels at 20km/h along a straight road in the direction 032°T. The other travels at 25km/h along another straight road in the direction 132°T. 1 ii) Draw a diagram to represent this information. iii) Find the distance Zoe and Kobi are apart to the nearest kilometre 2 after 3 hours. 1 c) Find the exact value of sec(60°). Solve $\sin \theta = \frac{-1}{\sqrt{2}}$ for $0^{\circ} \le \theta \le 360^{\circ}$ . d) 2

2

End of Question 6.

Prove  $\sec \theta + \tan \theta = \frac{1 + \sin \theta}{\cos \theta}$ .

e)

#### Question 7 (12 Marks)

Start a new page

Marks

(a) Solve for x:  $(x+1)^2 = 6$ , leaving your answer in exact form.

2

(b) Simplify  $(4-\sqrt{3})^3-(4+\sqrt{3})^3$ 

3

(c) Find the gradient of the curve  $y = 2x^3 - 4x^2$  at the point (1, -2) and hence find the equation of the normal to this curve at the point (1, -2).

3

(d) (i) Show that:  $\tan \theta + \cot \theta = \frac{1}{\sin \theta \cos \theta}$ 

1

(ii) Hence or otherwise, solve:

3

$$\frac{1+\cot\theta}{\cos ec\theta} - \frac{\sec\theta}{\tan\theta + \cot\theta} = -1, \ 0^{\circ} \le \theta \le 360^{\circ}$$

End of Examination.

# QUESTION 1

| Solution Solution                                                                                                                                             | Marking Scheme |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                                                                                                                               |                |
| a)                                                                                                                                                            |                |
| $\frac{1}{7.38} + \frac{1}{9.85} = 0.237 (3 \text{ s. f.})$                                                                                                   |                |
| b)                                                                                                                                                            |                |
| $x = 0.\overline{48}$ $100x = 48.\overline{48}$ $100x - x = 48.\overline{48} - 0.\overline{48}$ $99x = 48$ $x = \frac{48}{99}$ $x = \frac{16}{33}$            |                |
| c)                                                                                                                                                            |                |
| $\sqrt{56} + \sqrt{14} = \sqrt{4 \times 14} + \sqrt{14}$ $= 2\sqrt{14} + \sqrt{14}$ $= 3\sqrt{14}$ $= \sqrt{9 \times 14}$ $= \sqrt{126}$ $\therefore A = 126$ |                |
| d)                                                                                                                                                            |                |
| $\frac{4\sqrt{3} + 3}{3\sqrt{3} - 1} \times \frac{3\sqrt{3} + 1}{3\sqrt{3} + 1}$ $= \frac{(4\sqrt{3} + 3)(3\sqrt{3} + 1)}{(3\sqrt{3})^2 - 1^2}$               |                |
| $=\frac{12\times 3+4\sqrt{3}+9\sqrt{3}+3}{27-1}$                                                                                                              |                |
| $=\frac{39+13\sqrt{3}}{26}$                                                                                                                                   |                |
| $=\frac{13(3+\sqrt{3})}{2\times13}$                                                                                                                           |                |
| $=\frac{3+\sqrt{3}}{2}$                                                                                                                                       |                |

$$x^2 - 5x - 14 = (x - 7)(x + 2)$$

ii)

$$ax + ba + by + xy = a(x + b) + y(x + b)$$
  
=  $(a + y)(x + b)$ 

f)  

$$(x-1)^{2} - (x-2)^{2}$$

$$= ((x-1) - (x-2))((x-1) + (x-2))$$

$$= (1)((2x-3)$$

$$= 2x-3$$

g)
$$\frac{10x-15}{6} \times \frac{1}{8x-12} = \frac{10x-15}{6(8x-12)}$$

$$= \frac{5(2x-3)}{24(2x-3)}$$

$$= \frac{5}{24}$$

h) i)

$$6(y-1) = 3(y+8)$$

$$6y-6 = 3y+24$$

$$6y-3y = 24+6$$

$$3y = 30$$
∴  $y = 10$ 

ii)

$$\frac{a+2}{3} = \frac{a}{2} - 2$$

$$\frac{a+2}{3} = \frac{a-4}{2}$$

$$2(a+2) = 3(a-4)$$

$$2a+4 = 3a-12$$

$$3a-2a = 4+12$$

$$a = 16$$

i)
$$|2x+2| < 8$$

Case 1:
 $(2x+2) < 8$ 
 $2x < 6$ 
 $x < 3$ 

Case 2:
 $-(2x+2) < 8$ 
 $2x + 2 > -8$ 
 $2x > -10$ 
 $x > -5$ 

## QUESTION 2

| Solution 2                          | Marking Scheme   |
|-------------------------------------|------------------|
| Boldton                             | Trianking Seneme |
| a)                                  |                  |
| $f(x) = 2x^2 - x$                   |                  |
| $f(-x) = 2(-x)^2 - (-x)$            |                  |
| $= 2x^2 + x$                        |                  |
|                                     |                  |
| ≠ ±f(x)                             |                  |
| ∴ neither even or odd               |                  |
| b) i)                               |                  |
| g(1) = 1 + 1                        |                  |
| = 2                                 |                  |
|                                     |                  |
| ii)                                 |                  |
| g(-1) = -1                          |                  |
|                                     |                  |
| iii)                                |                  |
| g(0) = -1                           |                  |
| 3(-)                                |                  |
| iv)                                 |                  |
| g(2) + g(-2) = (2 + 1) + (1 - (-2)) |                  |
| = 3 + 3                             |                  |
| = 6                                 |                  |
|                                     |                  |
| c)                                  |                  |
| у                                   |                  |
| 4+                                  |                  |
|                                     |                  |
| 3+                                  |                  |
| 2+                                  |                  |
| 1                                   |                  |
|                                     |                  |
| -4 -3 -2 -1 1 2 3 4 x               |                  |
| -1+                                 |                  |
| -2+                                 |                  |
| -3-                                 |                  |
|                                     |                  |
| -4 <del> </del>                     |                  |
|                                     |                  |
|                                     |                  |
|                                     | <u> </u>         |

Domain: All real *x* 

Range: y > 0

ii)



Domain:  $-6 \le x \le 6$ 

Range:  $-9 \le y \le 3$ 



Domain: All real *x* 

Range: All real y

d)



| Solutions Solutions                                                                                   | Marking Schoma |  |  |
|-------------------------------------------------------------------------------------------------------|----------------|--|--|
| Solutions                                                                                             | Marking Scheme |  |  |
| a)                                                                                                    |                |  |  |
| $\begin{pmatrix} a \\ i \end{pmatrix}$                                                                |                |  |  |
|                                                                                                       |                |  |  |
| $\frac{d}{dx}2x^{7}-3x^{5}+5x^{3}-17$                                                                 |                |  |  |
| $= 14x^6 - 15x^4 + 15x^2$                                                                             |                |  |  |
| ii) '                                                                                                 |                |  |  |
| $\frac{d}{dx}\left(\frac{1}{\sqrt[3]{x^4}}\right) = \frac{d}{dx}\left(x^{-\frac{4}{3}}\right)$        |                |  |  |
| $= -\frac{4}{3}x^{-\frac{7}{3}}$                                                                      |                |  |  |
| $= -\frac{4}{3(\sqrt[3]{x^7})}$                                                                       |                |  |  |
| iii)                                                                                                  |                |  |  |
| $\frac{d}{dx}((x-2)(6x+7))$                                                                           |                |  |  |
| $= \left(\frac{d}{dx}(x-2)\right)(6x+7) + \left(\frac{d}{dx}(6x+7)\right)(x-2)$                       |                |  |  |
| = (1)(6x+7) + (6)(x-2)                                                                                |                |  |  |
| = 6x + 7 + 6x - 12                                                                                    |                |  |  |
| = 12x - 5                                                                                             |                |  |  |
| - 12X 0                                                                                               |                |  |  |
| iv)                                                                                                   |                |  |  |
| $\frac{d}{dx}\left(\frac{2x^2+1}{5-3x^2}\right)$                                                      |                |  |  |
| (0 0x)                                                                                                |                |  |  |
| $=\frac{\left(\frac{d}{dx}2x^2+1\right)(5-3x^2)-\left(\frac{d}{dx}5-3x^2\right)(2x^2+1)}{(5-3x^2)^2}$ |                |  |  |
| , ,                                                                                                   |                |  |  |
| $=\frac{(4x)(5-3x^2)-(-6x)(2x^2+1)}{(5-3x^2)^2}$                                                      |                |  |  |
| ·                                                                                                     |                |  |  |
| $=\frac{20x-12x^3+12x^3+6x}{(5-3x^2)^2}$                                                              |                |  |  |
| $(5-3x^2)^2$                                                                                          |                |  |  |
| $=\frac{26x}{(5-3x^2)^2}$                                                                             |                |  |  |
| $\left  \left( 5 - 3x^2 \right)^2 \right $                                                            |                |  |  |
|                                                                                                       |                |  |  |
|                                                                                                       |                |  |  |
|                                                                                                       |                |  |  |

$$g(x) = (-x^{4} + 3)^{5}$$

$$\therefore g'(x) = 5 \times (-x + 3)^{4} \times -4x^{3}$$

$$= -20x^{3}(-x^{4} + 3)^{4}$$

$$\therefore g'(-1) = -20(-1)^{3}(-(-1)^{4} + 3)^{4}$$

$$= -20(4)^{4}$$

$$= -20 \times 64$$

$$= -1280$$

#### c)

$$f(x) = (x+1)\sqrt{x}$$

$$= x\sqrt{x} + \sqrt{x}$$

$$= x^{\frac{3}{2}} + x^{\frac{1}{2}}$$

$$f'(x) = \frac{d}{dx}x^{\frac{3}{2}} + \frac{d}{dx}x^{\frac{1}{2}}$$

$$= \frac{3}{2}x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{2}}$$

$$= \frac{3\sqrt{x}}{2} + \frac{1}{2\sqrt{x}}$$

$$= \frac{3(\sqrt{x})^2}{2\sqrt{x}} + \frac{1}{2\sqrt{x}}$$

$$= \frac{3x+1}{2\sqrt{x}}$$

$$= \frac{3x+1}{2\sqrt{x}} \times \frac{\sqrt{x}}{\sqrt{x}}$$

$$= \frac{\sqrt{x}(3x+2)}{2x}$$

| QUESTION 4                                                                                                                  |                |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| Solutions                                                                                                                   | Marking Scheme |
| a)  y  C(4,6)  5  B(8,4)  A(2,0)  x                                                                                         |                |
| b) $m_{AB} = \frac{y_B - y_A}{x_B - x_A}$ $= \frac{4 - 0}{8 - 2}$ $= \frac{4}{6}$ $= \frac{2}{3}$                           |                |
| c) $y-y_1 = m(x-x_1)$<br>$y-6 = \frac{2}{3}(x-4)$<br>3y-18 = 2x-8<br>3y-2x-18+8=0<br>$\therefore 2x-3y+10=0$<br>as required |                |

d) 
$$2x-3y+10 = 0 \oplus x+2y-2 = 0 \oslash$$

$$2x + 4y - 4 = 0$$
 ③

$$-7y + 14 = 0$$

$$7y = 14$$

$$y = 2$$

substitite into @

$$x + (2 \times 2) - 2 = 0$$

$$x+2=0$$

$$x = -2$$

$$D = (-2, 2)$$



e)

$$\tan\theta = \frac{rise}{run}$$

$$=\frac{4-0}{8-2}$$

$$\therefore \quad \theta = \tan^{-1}\left(\frac{4}{6}\right)$$

f)
$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

$$= \frac{|(2)(2) + (-3)(0) + (10)|}{\sqrt{2^2 + (-3)^2}}$$

$$= \frac{|4 + 10|}{\sqrt{13}}$$

$$= \frac{14}{\sqrt{13}} \text{ units}$$

g)

$$D_{AB} = \sqrt{((8-2)^2 + (4-0)^2}$$

$$= \sqrt{52}$$

$$= \sqrt{4 \times 13}$$

$$= 2\sqrt{13}$$

$$A = bh$$

$$= 2\sqrt{13} \times \frac{14}{\sqrt{13}}$$

$$= 28 \text{ units}^2$$

| QUESTION 5                                                       |                |
|------------------------------------------------------------------|----------------|
| Solutions                                                        | Marking Scheme |
| a)                                                               |                |
| i)                                                               |                |
| In Δs AOC & ODB                                                  |                |
| AO = BO (radii of large circle)                                  |                |
| CO = DO (radii of small circle)                                  |                |
| ∠AOC = ∠BOD (vertically opposite)                                |                |
| $\therefore \Delta AOC = \Delta ODB(SAS)$                        |                |
|                                                                  |                |
| ii)                                                              |                |
| AC = DB (matching sides in congruent triangles                   |                |
| AOC and ODB)                                                     |                |
|                                                                  |                |
| iii)                                                             |                |
| $\angle ACO = \angle BDO$ (matching angles in congrunt trianges) |                |
| AC    DB (alternate angles ACO & BDO are equal)                  |                |
|                                                                  |                |
|                                                                  |                |
| b)                                                               |                |
| i)                                                               |                |
| $(n-2) \times 180^{\circ} = 2700$                                |                |
| n-2 = 15                                                         |                |
| n = 17                                                           |                |
| ∴ 17 sides                                                       |                |
|                                                                  |                |
| ii)                                                              |                |
| $\angle = 2700^{\circ} \div 17$                                  |                |
| = 158°49° (nearest minute)                                       |                |
|                                                                  |                |
| iii)                                                             |                |
| $\angle = 180^{\circ} - 158^{\circ}49^{\circ}$                   |                |
| = 21°11° (nearest minute)                                        |                |
|                                                                  |                |
|                                                                  |                |
| c)                                                               |                |
| In ∆s ABC & DEA                                                  |                |
| ∠ DAE = ∠ ACB (alternate angles, AE    BC)                       |                |
| ∠BAC = ∠ADE (alternate angles, AB    DE)                         |                |
| ∴ ∆ABC    ∆DEA (equi-angular)                                    |                |
|                                                                  |                |
|                                                                  |                |
|                                                                  |                |

d)  $2\angle CDE + 24^{\circ} = 180^{\circ} \text{ (angle sum of } \Delta BCD)$   $2\angle CDE = 156^{\circ}$   $\therefore \angle CDE = 78^{\circ}$   $\therefore x = 102^{\circ} \text{ (on a straight line with } \angle CDE)$   $2y^{\circ} + 78^{\circ} = 180^{\circ}$   $2y^{\circ} = 102^{\circ}$   $\therefore y = 51^{\circ}$ 

# **QUESTION 6**

a) i)



ii)
$$\sin(21^\circ) = \frac{5}{d}$$

$$d = \frac{5}{\sin(21^\circ)}$$

$$d = 13.95m (2 d. p)$$

iii)

$$\frac{h}{\sin(53^\circ)} = \frac{d}{\sin(90^\circ - 32^\circ)}$$

$$h\sin(58^\circ) = d\sin(53^\circ)$$

$$h = \frac{d \times \sin(53^\circ)}{\sin(58^\circ)}$$

$$h = 13.14m (2 d.p.)$$

b)



let the distance be d

$$d^{2} = (20 \times 3)^{2} + (25 \times 3)^{2} - 2(20 \times 3)(25 \times 3)\cos(132 - 32)$$
$$d = \sqrt{60^{2} + 75^{2} - (2 \times 60 \times 75 \times \cos(100))}$$

 $\therefore$  d = 104 km (nearest km)

c)
$$\sec(60^\circ) = \frac{1}{\cos(60^\circ)}$$

$$= \frac{1}{\left(\frac{1}{2}\right)}$$

$$= 2$$

d) 
$$\sin\theta = \frac{-1}{\sqrt{2}}$$
 
$$\theta = \sin^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$
 
$$\therefore \quad \theta = 225^{\circ} \text{ or } 315^{\circ}$$

e)

$$secθ + tanθ = \frac{1}{cosθ} + \frac{sinθ}{cosθ}$$
$$= \frac{1 + sinθ}{cosθ}$$

as required

#### Solutions

a)
$$(x+1)^{2} = 6$$

$$x + 1 = \pm \sqrt{6}$$

$$x = -1 \pm \sqrt{6}$$
b)
$$(4 - \sqrt{3})^{3} - (4 + \sqrt{3})^{3}$$

$$= ((4 - \sqrt{3}) - (4 + \sqrt{3}))((4 - \sqrt{3})^{2} + (4 + \sqrt{3})(4 - \sqrt{3}) + (4 + \sqrt{3})^{2})$$

$$= (-2 \sqrt{3})((16 - 8 \sqrt{3} + 3) + (16 - 3) + (16 + 8 \sqrt{3} + 3))$$

$$= (-2 \sqrt{3})(51)$$

$$= -102 \sqrt{3}$$
c)
$$\frac{dy}{dx} = 6x^{2} - 4x$$

$$at x = 1$$

$$m_{TANNOSIMT} = 6(1)^{2} - 4(1)$$

$$= 2$$

$$\therefore m_{NORMAL} = -\frac{1}{2}$$

$$y - y_{1} = m(x - x_{1})$$

$$y - (-2) = -\frac{1}{2}(x - 1)$$

$$-2(y + 2) = x - 1$$

$$-2y - 4 = x - 1$$

$$\therefore x + 2y + 3 = 0$$
d) i)
$$\tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{1}{\tan\theta}$$

$$= \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta\cos\theta}$$

$$= \frac{\sin\theta + \cos\theta}{\sin\theta\cos\theta}$$

$$= \frac{\sin\theta + \cos\theta}{\sin\theta\cos\theta}$$

$$= \frac{\sin\theta}{\sin\theta\cos\theta}$$

$$= \frac{1}{\sin\theta\cos\theta}$$
as required

ii) 
$$\frac{1 + \cot\theta}{\csc\theta} - \frac{\sec\theta}{\tan\theta + \cot\theta} = -1$$

$$\frac{1 + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}} - \frac{\frac{1}{\cos\theta}}{\frac{1}{\sin\theta\cos\theta}} = -1$$

$$\sin\theta(1 + \frac{\cos\theta}{\sin\theta}) - \sin\theta\cos\theta\left(\frac{1}{\cos\theta}\right) = -1$$

$$\sin\theta + \cos\theta - \sin\theta = -1$$

$$\cos\theta = -1$$

$$\theta = \cos^{-1}(-1)$$

$$\therefore \theta = 180^{\circ}$$